Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Timperi, Kalle"'
This paper introduces the notion of a universal plan, which when executed, is guaranteed to solve all planning problems in a category, regardless of the obstacles, initial state, and goal set. Such plans are specified as a deterministic sequence of a
Externí odkaz:
http://arxiv.org/abs/2407.02090
Autor:
Weinstein, Vadim K., Alshammari, Tamara, Timperi, Kalle G., Bennis, Mehdi, LaValle, Steven M.
When designing a robot's internal system, one often makes assumptions about the structure of the intended environment of the robot. One may even assign meaning to various internal components of the robot in terms of expected environmental correlates.
Externí odkaz:
http://arxiv.org/abs/2406.11237
Autor:
LaValle, Steven M., Center, Evan G., Ojala, Timo, Pouke, Matti, Prencipe, Nicoletta, Sakcak, Basak, Suomalainen, Markku, Timperi, Kalle G., Weinstein, Vadim K.
Publikováno v:
Annu. Rev. Control Robot. Auton. Syst. v. 7, 2023
This paper makes the case that a powerful new discipline, which we term perception engineering, is steadily emerging. It follows from a progression of ideas that involve creating illusions, from historical paintings and film, to video games and virtu
Externí odkaz:
http://arxiv.org/abs/2403.18588
This paper addresses the lower limits of encoding and processing the information acquired through interactions between an internal system (robot algorithms or software) and an external system (robot body and its environment) in terms of action and ob
Externí odkaz:
http://arxiv.org/abs/2308.09041
We study the global topological structure and smoothness of the boundaries of $\varepsilon$-neighbourhoods $E_\varepsilon = \{x \in \mathbb{R}^2 \, : \, \textrm{dist}(x, E) \leq \varepsilon \}$ of planar sets $E \subset \mathbb{R}^2$. We show that fo
Externí odkaz:
http://arxiv.org/abs/2107.07544
We study geometric and topological properties of singularities on the boundaries of $\varepsilon$-neighbourhoods $E_\varepsilon = \{x \in \mathbb{R}^2 : \textrm{dist}(x, E) \leq \varepsilon \}$ of planar sets $E \subset \mathbb{R}^2$. We develop a no
Externí odkaz:
http://arxiv.org/abs/2012.13515
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sakcak, Basak1 (AUTHOR) basak.sakcak@oulu.fi, Timperi, Kalle G1 (AUTHOR), Weinstein, Vadim1 (AUTHOR), LaValle, Steven M1 (AUTHOR)
Publikováno v:
International Journal of Robotics Research. Aug2024, Vol. 43 Issue 9, p1342-1362. 21p.