Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Timo S. Hänninen"'
Publikováno v:
Journal of the European Mathematical Society. 25:2057-2125
Autor:
Igor E. Verbitsky, Timo S. Hänninen
Publikováno v:
Indiana University Mathematics Journal. 69:837-871
Let $\sigma$, $\omega$ be measures on $\mathbb{R}^d$, and let $\{\lambda_Q\}_{Q\in\mathcal{D}}$ be a family of non-negative reals indexed by the collection $\mathcal{D}$ of dyadic cubes in $\mathbb{R}^d$. We characterize the two-weight norm inequalit
In previous work we established a multilinear duality and factorisation theory for norm inequalities for pointwise weighted geometric means of positive linear operators defined on normed lattices. In this paper we extend the reach of the theory for t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d286aa3abe0bb178302ea2f7cabc90a6
Autor:
Igor E. Verbitsky, Timo S. Hänninen
Let $\sigma$ and $\omega$ be locally finite Borel measures on $\mathbb{R}^d$, and let $p\in(1,\infty)$ and $q\in(0,\infty)$. We study the two-weight norm inequality $$ \lVert T(f\sigma) \rVert_{L^q(\omega)}\leq C \lVert f \rVert_{L^p(\sigma)}, \quad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e8d45f86b8dba73a336fc0eecdf8c92
Autor:
Timo S. Hänninen
Publikováno v:
Ark. Mat. 56, no. 2 (2018), 333-339
We remark that sparse and Carleson coefficients are equivalent for every countable collection of Borel sets and hence, in particular, for dyadic rectangles, the case relevant to the theory of bi-parameter singular integrals. The key observation is th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f909e56cc22ce17c454104094ef621d5
http://arxiv.org/abs/1709.10457
http://arxiv.org/abs/1709.10457
Autor:
Timo S. Hänninen, Emiel Lorist
Publikováno v:
American Mathematical Society. Proceedings, 147(1)
We study the domination of the lattice Hardy--Littlewood maximal operator by sparse operators in the setting of general Banach lattices. We prove that the admissible exponents of the dominating sparse operator are determined by the $q$-convexity of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84a2b2eac2570052c2da9d9d5172b703
Autor:
Juhani Keinonen, Jarkko Ihanus, Timo S. Hänninen, Markku Leskelä, Timo Sajavaara, Ilpo Mutikainen, Timo Hatanpää, and Mikko Ritala, Titta Aaltonen
Publikováno v:
Chemistry of Materials. 14:1937-1944
SrS and BaS thin films were grown on glass substrates using an atomic layer deposition (ALD) technique and (C5iPr3H2)2Sr(THF) (1), (C5Me5)2Sr(THF)x (2), (C5Me5)2Ba(THF)x (3), and H2S as precursors. Deposition temperatures were 120−460, 155−400, a
Autor:
Timo S. Hänninen, Tuomas Hytönen
Publikováno v:
Journal of Operator Theory
We prove that the operator norm of every Banach space valued Calderon-Zygmund operator T on the weighted Lebesgue-Bochner space depends linearly on the Muckenhoupt A_2 characteristic of the weight. In parallel with the proof of the real-valued case,
Autor:
Tuomas Hytönen, Timo S. Hänninen
In this paper we extend dyadic shifts and the dyadic representation theorem to an operator-valued setting: We first define operator-valued dyadic shifts and prove that they are bounded. We then extend the dyadic representation theorem, which states t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5af4a1fbda975359bfdebe50f3d3f92
Autor:
Timo S. Hänninen
We study the vector-valued positive dyadic operator \[T_\lambda(f\sigma):=\sum_{Q\in\mathcal{D}} \lambda_Q \int_Q f \mathrm{d}\sigma 1_Q,\] where the coefficients $\{\lambda_Q:C\to D\}_{Q\in\mathcal{D}}$ are positive operators from a Banach lattice $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ceb5ed0173434a163174ee089bea028