Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Tim Hulshof"'
Autor:
Tim Hulshof, Asaf Nachmias
Publikováno v:
Random Structures and Algorithms, 56(2), 557-593. Wiley
We study bond percolation on the hypercube $\{0,1\}^m$ in the slightly subcritical regime where $p = p_c (1-\varepsilon_m)$ and $\varepsilon_m = o(1)$ but $\varepsilon_m \gg 2^{-m/3}$ and study the clusters of largest volume and diameter. We establis
Publikováno v:
Pure TUe
Probability Theory and Related Fields, 177(1-2), 1-53. Springer
arXiv. Cornell University Library
arXiv
Probability Theory and Related Fields, 177(1-2), 1-53. Springer
arXiv. Cornell University Library
arXiv
Let $\mathcal{T}$ be a supercritical Galton-Watson tree with a bounded offspring distribution that has mean $\mu >1$, conditioned to survive. Let $\varphi_{\mathcal{T}}$ be a random embedding of $\mathcal{T}$ into $\mathbb{Z}^d$ according to a simple
Publikováno v:
Combinatorics, Probability and Computing, 29(1), 68-100. Cambridge University Press
The Hamming graph $H(d,n)$ is the Cartesian product of $d$ complete graphs on $n$ vertices. Let $m=d(n-1)$ be the degree and $V = n^d$ be the number of vertices of $H(d,n)$. Let $p_c^{(d)}$ be the critical point for bond percolation on $H(d,n)$. We s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eaf65ea79650a75cf6f2cb5d35c2096e
http://wrap.warwick.ac.uk/123712/1/WRAP-expansion-percolation-critical-points-hamming-graphs-Federico-2019.pdf
http://wrap.warwick.ac.uk/123712/1/WRAP-expansion-percolation-critical-points-hamming-graphs-Federico-2019.pdf
Publikováno v:
Electron. Commun. Probab.
Electronic Communications in Probability, 21:27, 1-8. Institute of Mathematical Statistics
Electronic Communications in Probability, 21:27, 1-8. Institute of Mathematical Statistics
We study the connectivity of random subgraphs of the $d$-dimensional Hamming graph $H(d, n)$, which is the Cartesian product of $d$ complete graphs on $n$ vertices. We sample the random subgraph with an i.i.d.\ Bernoulli bond percolation on $H(d,n)$
Publikováno v:
Chaos, Solitons and Fractals, 139:109965. Elsevier
Chaos, Solitons, and Fractals
Chaos, Solitons, and Fractals
In this paper we conduct a simulation study of the spread of an epidemic like COVID-19 with temporary immunity on finite spatial and non-spatial network models. In particular, we assume that an epidemic spreads stochastically on a scale-free network
Autor:
Tim Hulshof, Thomas Beekenkamp
Publikováno v:
Statistics and Probability Letters, 152, 28-34. Elsevier
In this note we study the phase transition for percolation on quasi-transitive graphs with quasi-transitively inhomogeneous edge-retention probabilities. A quasi-transitive graph is an infinite graph with finitely many different "types" of edges and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c914d00a66276d3b9408ca16a09e2bf9
Publikováno v:
Ann. Appl. Probab. 27, no. 4 (2017), 2569-2604
The Annals of Applied Probability, 27(4), 2569-2604. Institute of Mathematical Statistics
The Annals of Applied Probability, 27(4), 2569-2604. Institute of Mathematical Statistics
Scale-free percolation is a percolation model on $\mathbb{Z}^d$ which can be used to model real-world networks. We prove bounds for the graph distance in the regime where vertices have infinite degrees. We fully characterize transience vs. recurrence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eece494dfd12b68450ae5a1cefd61702
https://projecteuclid.org/euclid.aoap/1504080041
https://projecteuclid.org/euclid.aoap/1504080041
Publikováno v:
Journal of Statistical Physics, 155(5), 966-1025. Springer
The incipient infinite cluster (IIC) measure is the percolation measure at criticality conditioned on the cluster of the origin to be infinite. Using the lace expansion, we construct the IIC measure for high-dimensional percolation models in three di
Autor:
Tim Hulshof, Aernout C.D. van Enter
Publikováno v:
Journal of Statistical Physics, 128(6), 1383-1389. Springer
Journal of Statistical Physics, 128(6), 1383-1389. SPRINGER
Journal of Statistical Physics, 128(6), 1383-1389. SPRINGER
In this note we analyze an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced
Autor:
Tim Hulshof
Publikováno v:
Electronic Journal of Probability, 20. Institute of Mathematical Statistics
Electron. J. Probab.
Electron. J. Probab.
Consider a long-range percolation model on $\mathbb{Z}^d$ where the probability that an edge $\{x,y\} \in \mathbb{Z}^d \times \mathbb{Z}^d$ is open is proportional to $\|x-y\|_2^{-d-\alpha}$ for some $\alpha >0$ and where $d > 3 \min\{2,\alpha\}$. We