Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Tierz, Miguel"'
Publikováno v:
Phys. Rev. Research 6, 033007 (2024)
The accessibility of the Hawking-Page transition in AdS$_5$ through a 1d Heisenberg spin chain is demonstrated. We use the random matrix formulation of the Loschmidt echo for a set of spin chains, and randomize the ferromagnetic spin interaction. It
Externí odkaz:
http://arxiv.org/abs/2401.13963
Autor:
Russo, Jorge G., Tierz, Miguel
Publikováno v:
Phys. Rev. A 109, 033702 (2024)
New exact formulas are derived for systems involving Landau-Zener transition rates and for absorption spectra in quantum dots. These rectify previous inaccurate approximations utilized in experimental studies. The exact formulas give an explicit expr
Externí odkaz:
http://arxiv.org/abs/2310.13058
Publikováno v:
Quantum 8, 1271 (2024)
We uncover a novel dynamical quantum phase transition, using random matrix theory and its associated notion of planar limit. We study it for the isotropic XY Heisenberg spin chain. For this, we probe its real-time dynamics through the Loschmidt echo.
Externí odkaz:
http://arxiv.org/abs/2208.01659
Autor:
Santilli, Leonardo, Tierz, Miguel
Publikováno v:
J. High Energ. Phys. 2022, 73 (2022)
We establish and develop a correspondence between certain crystal bases (Kashiwara crystals) and the Coulomb branch of three-dimensional $ \mathcal{N} =4 $ gauge theories. The result holds for simply-laced, non-simply laced and affine quivers. Two eq
Externí odkaz:
http://arxiv.org/abs/2111.05206
Autor:
Santilli, Leonardo, Tierz, Miguel
Publikováno v:
J. Phys. A: Math. Theor. 54 435202 (2021)
We give expansions of reproducing kernels of the Christoffel-Darboux type in terms of Schur polynomials. For this, we use evaluations of averages of characteristic polynomials and Schur polynomials in random matrix ensembles. We explicitly compute ne
Externí odkaz:
http://arxiv.org/abs/2106.04168
Autor:
Santilli, Leonardo, Tierz, Miguel
Publikováno v:
Nucl. Phys. B 976 (2022) 115694
We study a unitary matrix model with Gross-Witten-Wadia weight function and determinant insertions. After some exact evaluations, we characterize the intricate phase diagram. There are five possible phases: an ungapped phase, two different one-cut ga
Externí odkaz:
http://arxiv.org/abs/2102.11305
Autor:
Santilli, Leonardo, Tierz, Miguel
Publikováno v:
Nucl. Phys. B 973 (2021), 115582
We show that the Riemannian Gaussian distributions on symmetric spaces, introduced in recent years, are of standard random matrix type. We exploit this to compute analytically marginals of the probability density functions. This can be done fully, us
Externí odkaz:
http://arxiv.org/abs/2011.13680
Publikováno v:
J. High Energ. Phys. 2020, 86 (2020)
We derive the $T\overline{T}$-perturbed version of two-dimensional $q$-deformed Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the first order formalism to Jackiw-Teitelboim gravity. We show that the $T\overli
Externí odkaz:
http://arxiv.org/abs/2009.00657
Autor:
Santilli, Leonardo, Tierz, Miguel
Publikováno v:
J. High Energ. Phys. 2020, 22 (2020)
We study several quiver Chern-Simons-matter theories on the three-sphere, combining the matrix model formulation with a systematic use of Mordell's integral, computing partition functions and checking dualities. We also consider Wilson loops in ABJ(M
Externí odkaz:
http://arxiv.org/abs/2008.00465
Autor:
Russo, Jorge G., Tierz, Miguel
Publikováno v:
J. High Energ. Phys. 2020, 81 (2020)
We study a unitary matrix model of the Gross-Witten-Wadia type, extended with the addition of characteristic polynomial insertions. The model interpolates between solvable unitary matrix models and is the unitary counterpart of a deformed Cauchy ense
Externí odkaz:
http://arxiv.org/abs/2007.08515