Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Tien-Nam Le"'
Publikováno v:
Journal of Combinatorial Theory, Series B
Journal of Combinatorial Theory, Series B, Elsevier, 2019, 138, pp.166-171. ⟨10.1016/j.jctb.2019.01.005⟩
Journal of Combinatorial Theory, Series B, 2019, 138, pp.166-171. ⟨10.1016/j.jctb.2019.01.005⟩
Journal of Combinatorial Theory, Series B, Elsevier, 2019, 138, pp.166-171. ⟨10.1016/j.jctb.2019.01.005⟩
Journal of Combinatorial Theory, Series B, 2019, 138, pp.166-171. ⟨10.1016/j.jctb.2019.01.005⟩
The \emph{chromatic number} of a directed graph $D$ is the minimum number of colors needed to color the vertices of $D$ such that each color class of $D$ induces an acyclic subdigraph. Thus, the chromatic number of a tournament $T$ is the minimum num
Publikováno v:
Pattern Recognition Letters. 125:249-255
In unsupervised domain adaptation (DA), 1 aims at learning from labeled source data and fully unlabeled target examples a model with a low error on the target domain. In this setting, standard generalization bounds prompt us to minimize the sum of th
Autor:
Tien-Nam Le
Publikováno v:
Journal of Combinatorial Theory, Series B
Journal of Combinatorial Theory, Series B, Elsevier, 2019, 135, pp.279-294. ⟨10.1016/j.jctb.2018.08.008⟩
Journal of Combinatorial Theory, Series B, 2019, 135, pp.279-294. ⟨10.1016/j.jctb.2018.08.008⟩
Journal of Combinatorial Theory, Series B, Elsevier, 2019, 135, pp.279-294. ⟨10.1016/j.jctb.2018.08.008⟩
Journal of Combinatorial Theory, Series B, 2019, 135, pp.279-294. ⟨10.1016/j.jctb.2018.08.008⟩
It was independently conjectured by H\"aggkvist in 1989 and Kriesell in 2011 that given a positive integer $\ell$, every simple eulerian graph with high minimum degree (depending on $\ell$) admits an eulerian tour such that every segment of length at
Publikováno v:
Journal of Combinatorial Theory, Series B
Journal of Combinatorial Theory, Series B, 2017, 124, pp.39-55. ⟨10.1016/j.jctb.2016.12.006⟩
Bensmail, J, Harutyunyan, A, Le, T N, Merker, M & Thomassé, S 2017, ' A proof of the Barát-Thomassen conjecture ', Journal of Combinatorial Theory. Series B, vol. 124, pp. 39-55 . https://doi.org/10.1016/j.jctb.2016.12.006
Journal of Combinatorial Theory, Series B, Elsevier, 2017, 124, pp.39-55. ⟨10.1016/j.jctb.2016.12.006⟩
Journal of Combinatorial Theory, Series B, 2017, 124, pp.39-55. ⟨10.1016/j.jctb.2016.12.006⟩
Bensmail, J, Harutyunyan, A, Le, T N, Merker, M & Thomassé, S 2017, ' A proof of the Barát-Thomassen conjecture ', Journal of Combinatorial Theory. Series B, vol. 124, pp. 39-55 . https://doi.org/10.1016/j.jctb.2016.12.006
Journal of Combinatorial Theory, Series B, Elsevier, 2017, 124, pp.39-55. ⟨10.1016/j.jctb.2016.12.006⟩
International audience; The Barát-Thomassen conjecture asserts that for every tree T on m edges, there exists a constant k T such that every k T-edge-connected graph with size divisible by m can be edge-decomposed into copies of T. So far this conje
Publikováno v:
Combinatorica
Combinatorica, 2019, 39 (5), pp.1021-1053. ⟨10.1007/s00493-019-3815-8⟩
Electronic Notes in Discrete Mathematics
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17)
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17), Aug 2017, Vienna, Austria. pp.577-583
Combinatorica, Springer Verlag, 2019, 39 (5), pp.1021-1053. ⟨10.1007/s00493-019-3815-8⟩
Electronic Notes in Discrete Mathematics, 2017, 61, pp.577-583. ⟨10.1016/j.endm.2017.07.010⟩
HAL
Combinatorica, 2019, 39 (5), pp.1021-1053. ⟨10.1007/s00493-019-3815-8⟩
Electronic Notes in Discrete Mathematics
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17)
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17), Aug 2017, Vienna, Austria. pp.577-583
Combinatorica, Springer Verlag, 2019, 39 (5), pp.1021-1053. ⟨10.1007/s00493-019-3815-8⟩
Electronic Notes in Discrete Mathematics, 2017, 61, pp.577-583. ⟨10.1016/j.endm.2017.07.010⟩
HAL
The chromatic number of a digraph $D$ is the minimum number of acyclic subgraphs covering the vertex set of $D$. A tournament $H$ is a hero if every $H$-free tournament $T$ has chromatic number bounded by a function of $H$. Inspired by the celebrated
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c4ef7091699cc4b32b0c0556db6d883
https://hal.science/hal-02935899
https://hal.science/hal-02935899
Autor:
Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, Meirav Zehavi
Publikováno v:
ACM Transactions on Algorithms
ACM Transactions on Algorithms, 2019, 15 (1), pp.1-44
SODA
ACM Transactions on Algorithms, Association for Computing Machinery, 2019, 15 (1), pp.1-44
HAL
ACM Transactions on Algorithms (TALG)
ACM Transactions on Algorithms, 2019, 15 (1), pp.1-44
SODA
ACM Transactions on Algorithms, Association for Computing Machinery, 2019, 15 (1), pp.1-44
HAL
ACM Transactions on Algorithms (TALG)
We consider four well-studied NP-complete packing/covering problems on graphs: F eedback V ertex S et in T ournaments (FVST), C luster V ertex D eletion (CVD), T riangle P acking in T ournaments (TPT) and I nduced P 3 -P acking . For these four probl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f18e398f7eaa1b245827c06a834c73f2
https://hal.science/hal-02055844
https://hal.science/hal-02055844
Building on recent work of Dvo\v{r}\'ak and Yepremyan, we show that every simple graph of minimum degree $7t+7$ contains $K_t$ as an immersion and that every graph with chromatic number at least $3.54t + 4$ contains $K_t$ as an immersion. We also sho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef8769dbb809b8f3fda70cfaa8bb24d0
http://hdl.handle.net/11573/1612495
http://hdl.handle.net/11573/1612495
Autor:
Paul Wollan, Tien-Nam Le
Publikováno v:
Electronic Notes in Discrete Mathematics. 54:121-126
Building on recent work of Dvořak and Yepremyan, we show that every simple graph of minimum degree 7 t + 7 contains K t as an immersion and that every graph with chromatic number at least 3.54 t + 4 contains K t as an immersion.
Publikováno v:
The Electronic Journal of Combinatorics
The Electronic Journal of Combinatorics, Open Journal Systems, 2018, 25 (3), pp.P3.32
HAL
The Electronic Journal of Combinatorics, 2018, 25 (3), pp.P3.32
The Electronic Journal of Combinatorics, Open Journal Systems, 2018, 25 (3), pp.P3.32
HAL
The Electronic Journal of Combinatorics, 2018, 25 (3), pp.P3.32
In this paper, we investigate the relation between the (fractional) domination number of a digraph $G$ and the independence number of its underlying graph, denoted by $\alpha(G)$. More precisely, we prove that every digraph $G$ has fractional dominat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4bd70d17cf5de6aebfc097c0b636942e
https://hal.archives-ouvertes.fr/hal-01990176
https://hal.archives-ouvertes.fr/hal-01990176
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.