Zobrazeno 1 - 10
of 126
pro vyhledávání: '"Tien-Cuong Dinh"'
Autor:
Fabrizio Bianchi, Tien-Cuong Dinh
Publikováno v:
Forum of Mathematics, Sigma, Vol 12 (2024)
We show that the measure of maximal entropy of every complex Hénon map is exponentially mixing of all orders for Hölder observables. As a consequence, the Central Limit Theorem holds for all Hölder observables.
Externí odkaz:
https://doaj.org/article/0e1af31bb6304de3b92f02cbd7ebf3ef
Autor:
Fabrizio Bianchi, Tien-Cuong Dinh
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 172:164-201
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. :1-31
Let $\mu $ be a probability measure on $\mathrm {GL}_d(\mathbb {R})$ , and denote by $S_n:= g_n \cdots g_1$ the associated random matrix product, where $g_j$ are i.i.d. with law $\mu $ . Under the assumptions that $\mu $ has a finite exponential mome
Publikováno v:
Geometric and Functional Analysis. 32:568-594
We study zero entropy automorphisms of a compact K\"ahler manifold $X$. Our goal is to bring to light some new structures of the action on the cohomology of $X$, in terms of the so-called dynamical filtrations on $H^{1,1}(X, {\mathbb R})$. Based on t
Autor:
Tien-Cuong Dinh, Hao Wu
Let f be a meromorphic correspondence on a compact Kahler manifold X of dimension k. Assume that its topological degree is larger than the dynamical degree of order k - 1. We obtain a quantitative regularity of the equilibrium measure of f in terms o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4fd62795c718fb1c6783abeb82d9ee28
http://arxiv.org/abs/2301.12786
http://arxiv.org/abs/2301.12786
Publikováno v:
The Journal of Geometric Analysis. 33
Publikováno v:
Mathematische Annalen. 383:399-414
We show, among other things, that for each integer $$n \ge 3$$ , there is a smooth complex projective rational variety of dimension n, with discrete non-finitely generated automorphism group and with infinitely many mutually non-isomorphic real forms
Autor:
Hao Wu, Tien-Cuong Dinh
Publikováno v:
Proceedings of the American Mathematical Society. 149:3453-3461
We study local positive d d c dd^{c} -closed currents directed by a foliation by Riemann surfaces near a hyperbolic singularity which have no mass on the separatrices. A theorem of Nguyên says that the Lelong number of such a current at the singular
Publikováno v:
Pure and Applied Mathematics Quarterly. 17:933-969
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.