Zobrazeno 1 - 10
of 188
pro vyhledávání: '"Tian Jing-Feng"'
Autor:
Yang Zhen-Hang, Tian Jing-Feng
Publikováno v:
Open Mathematics, Vol 16, Iss 1, Pp 1048-1060 (2018)
In this paper we develop Windschitl’s approximation formula for the gamma function by giving two asymptotic expansions using a little known power series. In particular, for n ∈ ℕ with n ≥ 4, we have
Externí odkaz:
https://doaj.org/article/9af12ac546374d7e827f369a9c718ac1
Autor:
Mao, Zhong-Xuan, Tian, Jing-Feng
In this paper, we present some monotonicity rules for the ratio of two power series $x\mapsto \sum_{k=0}^\infty a_k x^k / \sum_{k=0}^\infty b_k x^k$ under the assumption that the monotonicity of the sequence ${a_k/b_k}$ changes twice. Additionally, w
Externí odkaz:
http://arxiv.org/abs/2404.18168
The main objective of this paper is to establish the $Y$-function and L'Hospital-type monotonicity rules with nabla and diamond-alpha derivatives on time scales.
Externí odkaz:
http://arxiv.org/abs/2401.12774
As an efficient mathematical tool, monotonicity rules play an extremely crucial role in the real analysis field. In this paper, we explore some monotonicity rules for quotient of Delta, Nabla and Diamond-Alpha integrals with variable upper limits and
Externí odkaz:
http://arxiv.org/abs/2312.10252
Autor:
Mao, Zhong-Xuan, Tian, Jing-Feng
In this paper, we investigate the monotonicity of the functions $t \mapsto \frac{\sum_{k=0}^\infty a_k w_k(t)}{\sum_{k=0}^\infty b_k w_k(t)}$ and $x \mapsto \frac{\int_\alpha^\beta f(t) w(t,x) \textrm{d} t}{\int_\alpha^\beta g(t) w(t,x) \textrm{d} t}
Externí odkaz:
http://arxiv.org/abs/2306.04659
Autor:
Yang, Zhen-Hang, Tian, Jing-Feng
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2023 Apr 01. 17(1), 138-158.
Externí odkaz:
https://www.jstor.org/stable/27281400
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tian Jing-Feng
Publikováno v:
Journal of Inequalities and Applications, Vol 2011, Iss 1, p 77 (2011)
Abstract In this paper, we extend Hu Ke's inequality, which is a sharpness of Hölder's inequality. Moreover, the obtained results are used to improve Hao Z-C inequality and Beckenbach-type inequality that is due to Wang. Mathematics Subject Classifi
Externí odkaz:
https://doaj.org/article/bd964b7e69e048cc941a0166628f27d6
Autor:
Mao, Zhong-Xuan, Tian, Jing-Feng
Publikováno v:
Comptes Rendus. Mathématique, Vol 361, Iss G1, Pp 217-235 (2023)
In this paper, we introduce some monotonicity rules for the ratio of integrals. Furthermore, we demonstrate that the function $-T_{\nu ,\alpha ,\beta }(s)$ is completely monotonic in $s$ and absolutely monotonic in $\nu $ if and only if $\beta \ge 1$
Externí odkaz:
https://doaj.org/article/a34cdd4cfece4495a7337ad74d51ffd5
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.