Zobrazeno 1 - 10
of 443
pro vyhledávání: '"Tian, Sen"'
Autor:
Ran, Longyi *, Shi, Jiarui *, Lin, Yinan, Xu, Chenlin, Han, Zhengkun, Tian, Sen, Qin, Xiaoyang, Li, Qinjin, Zhang, Taiyu, Li, Huiying †, Zhang, Yu †
Publikováno v:
In Journal of Dairy Science November 2024 107(11):8796-8810
Autor:
Zhang, Wusheng, Tian, Sen, Li, Xiang, Chen, Yilin, Wang, Xinyu, Zhang, Yunshuo, Lv, Lihui, Li, Yonghua, Shi, Hui, Bai, Chong
Publikováno v:
In Clinical Lung Cancer May 2024 25(3):215-224
Autor:
Tian, Sen, Li, Xiang, Liu, Jian, Wang, Xinyu, Chen, Hui, Dai, Zeyu, Chen, Qian, Shi, Hui, Li, Yonghua, Huang, Haidong, Bai, Chong
Publikováno v:
In Heliyon 30 April 2024 10(8)
Autor:
Tian, Sen, Ipeirotis, Panos
Bibliographic metrics are commonly utilized for evaluation purposes within academia, often in conjunction with other metrics. These metrics vary widely across fields and change with the seniority of the scholar; consequently, the only way to interpre
Externí odkaz:
http://arxiv.org/abs/2103.16025
Autor:
Tian, Sen1 (AUTHOR) tiansen@swufe.edu.cn, Zhao, Liangfo1 (AUTHOR)
Publikováno v:
PLoS ONE. 5/20/2024, Vol. 19 Issue 5, p1-18. 18p.
Many important modeling tasks in linear regression, including variable selection (in which slopes of some predictors are set equal to zero) and simplified models based on sums or differences of predictors (in which slopes of those predictors are set
Externí odkaz:
http://arxiv.org/abs/2009.10029
It is always a hot and difficult point to improve the accuracy of convolutional neural network model and speed up its convergence. Based on the idea of small world network, a random edge adding algorithm is proposed to improve the performance of conv
Externí odkaz:
http://arxiv.org/abs/2003.07794
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Least squares (LS)-based subset selection methods are popular in linear regression modeling. Best subset selection (BS) is known to be NP-hard and has a computational cost that grows exponentially with the number of predictors. Recently, Bertsimas (2
Externí odkaz:
http://arxiv.org/abs/1911.10191
Publikováno v:
Brain Science Advances. Dec2023, Vol. 9 Issue 4, p297-309. 13p.