Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Tiago Picon"'
Autor:
Tiago Picon, Claudio Vasconcelos
Publikováno v:
Integral Equations and Operator Theory. 95
Autor:
Pablo De Nápoli, Tiago Picon
Publikováno v:
Proceedings of the American Mathematical Society.
In this work, we investigate the limit case p = 1 p=1 of the classical Stein-Weiss inequality for the Riesz potential. Our main result is a characterization of this inequality for a special class of vector fields associated to cocanceling operators i
Autor:
Laurent Moonens, Tiago Picon
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Consider A ( x , D ) : C ∞ ( Ω , E ) → C ∞ ( Ω , F ) an elliptic and canceling linear differential operator of order ν with smooth complex coefficients in Ω ⊂ R N from a finite dimension complex vector space E to a finite dimension comple
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we establish Sobolev type compact embedding theorems for Hormander classes of pseudodifferential operators $OpS^{-\alpha }_{1,\delta }$ on localizable Hardy space. Our work include new optimal boundedness results. As application, we obt
Publikováno v:
Nonlinear Analysis. 225:113110
Autor:
Tiago Picon, Jorge Hounie
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let A ( x , D ) be an elliptic linear differential operator of order ν with smooth complex coefficients in Ω ⊂ R N from a complex vector space E to a complex vector space F. In this paper we show that if l ∈ R satisfies 0 l N and l ≤ ν , the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f47844b805262637d82091fa78c4fb6
Autor:
Tiago Picon, Laurent Moonens
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 61:1055-1061
In the following note, we focus on the problem ofexistenceof continuous solutions vanishing at infinity to the equation divv = fforf ∈ Ln(ℝn) and satisfying an estimate of the type ||v||∞ ⩽ C||f||nfor anyf ∈ Ln(ℝn), whereC > 0 is related
Autor:
Jorge Hounie, Tiago Picon
Publikováno v:
Mathematische Nachrichten. 289:1838-1854
In this work we show that if A(x,D) is a linear differential operator of order ν with smooth complex coefficients in Ω⊂RN from a complex vector space E to a complex vector space F, the Sobolev a priori estimate ∥u∥Wν−1,N/(N−1)≤C∥A(x,
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy-Sobolev spaces $\dot{H}^{1,p}(\mathbb{R}^d)$ when $1/p < 1+1/d$. This range of exponents is sharp. As a by-product of the proof, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3397a7edc4e006f4112968972fd0f8b
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 195:1081-1091
It is well known that, for space dimension \(n> 3\), one cannot generally expect \(L^1\)–\(L^p\) estimates for the solution of $$\begin{aligned} u_{tt}-\varDelta u = 0, \quad u(0,x)=0,\quad u_t(0,x)=g(x), \end{aligned}$$ where \((t,x)\in {\mathbb {