Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Tiago Botari"'
Autor:
Vincent Wing-hei Lau, Igor Moudrakovski, Tiago Botari, Simon Weinberger, Maria B. Mesch, Viola Duppel, Jürgen Senker, Volker Blum, Bettina V. Lotsch
Publikováno v:
Nature Communications, Vol 7, Iss 1, Pp 1-10 (2016)
Graphitic carbon nitride is a promising hydrogen evolution photocatalyst, although there is limited understanding of its mechanistic operation. Here, the authors employ molecular heptazine-based model catalysts to identify catalytically relevant defe
Externí odkaz:
https://doaj.org/article/15ca806921b3418695a41fd3cb0e480e
Publikováno v:
Neural Networks. 162:117-130
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Nonprecious two-dimensional materials, especially molybdenum sulfide (MoS2), have gained considerable attention due to their unique catalytic activity and stability for the hydrogen evolution react...
Autor:
Saulo Martiello Mastelini, Daniel R. Cassar, Edesio Alcobaça, Tiago Botari, André C.P.L.F. de Carvalho, Edgar D. Zanotto
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Due to their unique optical and electronic functionalities, chalcogenide glasses are materials of choice for numerous microelectronic and photonic devices. However, to extend the range of compositions and applications, profound knowledge about compos
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e4fc6fce9a00df2213b0f40f8db125d
Publikováno v:
Carbon. 143:172-178
Recent research has revealed that strain can be used to control electronic properties, thermal conductivity, and permeability in two-dimensional (2D) materials. The use of deformation to tune physical properties is often termed strain engineering, an
Autor:
Tiago Botari, Daniel R. Cassar, Saulo Martiello Mastelini, Edgar Dutra Zanotto, Edesio Alcobaça, André C. P. L. F. de Carvalho
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
With the advent of powerful computer simulation techniques, it is time to move from the widely used knowledge-guided empirical methods to approaches driven by data science, mainly machine learning algorithms. We investigated the predictive performanc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3427184b2b5c750f250e680b25199d50
Autor:
Tanjin He, Haoyan Huo, Ziqin Rong, Vahe Tshitoyan, Olga Kononova, Tiago Botari, Wenhao Sun, Gerbrand Ceder
Publikováno v:
Chemistry of Materials, vol 32, iss 18
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Collecting and analyzing the vast amount of information available in the solid-state chemistry literature may accelerate our understanding of materials synthesis. However, one major problem is the difficulty of identifying which materials from a synt
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74e24ff48e1149d8fcd803c2fabee22e
Autor:
Bruno Almeida Pimentel, Tiago Botari, André C. P. L. F. de Carvalho, Saulo Martiello Mastelini, Daniel R. Cassar, Edesio Alcobaça, Edgar Dutra Zanotto
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Modern technologies demand the development of new glasses with unusual properties. Most of the previous developments occurred by slow, expensive trial-and-error approaches, which have produced a considerable amount of data over the past 100 years. By
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f34a09e2c18825866de5726dc04f8dc
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783030438227
PKDD/ECML Workshops (1)
PKDD/ECML Workshops (1)
As machine learning becomes an important part of many real world applications affecting human lives, new requirements, besides high predictive accuracy, become important. One important requirement is transparency, which has been associated with model
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bedd5e6f3b667025d1230a641cc706e0
https://doi.org/10.1007/978-3-030-43823-4_21
https://doi.org/10.1007/978-3-030-43823-4_21