Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Ti Bai"'
Autor:
Anjali Balagopal, Michael Dohopolski, Young Suk Kwon, Steven Montalvo, Howard Morgan, Ti Bai, Dan Nguyen, Xiao Liang, Xinran Zhong, Mu-Han Lin, Neil Desai, Steve Jiang
Publikováno v:
Physics and Imaging in Radiation Oncology, Vol 30, Iss , Pp 100577- (2024)
Background and purpose: Radiation-induced erectile dysfunction (RiED) commonly affects prostate cancer patients, prompting clinical trials across institutions to explore dose-sparing to internal-pudendal-arteries (IPA) for preserving sexual potency.
Externí odkaz:
https://doaj.org/article/7f81a560a5654c77b92d2fa77c809fe7
Autor:
Biling Wang, Michael Dohopolski, Ti Bai, Junjie Wu, Raquibul Hannan, Neil Desai, Aurelie Garant, Daniel Yang, Dan Nguyen, Mu-Han Lin, Robert Timmerman, Xinlei Wang, Steve B Jiang
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 2, p 025077 (2024)
Our study aims to explore the long-term performance patterns for deep learning (DL) models deployed in clinic and to investigate their efficacy in relation to evolving clinical practices. We conducted a retrospective study simulating the clinical imp
Externí odkaz:
https://doaj.org/article/c92535c3d5444875b45fe41667566894
Publikováno v:
IEEE Journal of Biomedical and Health Informatics. 26:6105-6115
Quantification of left ventricular (LV) ejection fraction (EF) from echocardiography depends upon the identification of endocardium boundaries as well as the calculation of end-diastolic (ED) and end-systolic (ES) LV volumes. It's critical to segment
Autor:
Shaojie Chang, Yongfeng Gao, Marc J. Pomeroy, Ti Bai, Hao Zhang, Siming Lu, Perry J. Pickhardt, Amit Gupta, Michael J. Reiter, Elaine S. Gould, Zhengrong Liang
Publikováno v:
IEEE Trans Med Imaging
In this study, we proposed a computer-aided diagnosis (CADx) framework under dual-energy spectral CT (DECT), which operates directly on the transmission data in the pre-log domain, called CADxDE, to explore the spectral information for lesion diagnos
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::860e5a8d31c54c19b977488c58abd068
https://europepmc.org/articles/PMC10238622/
https://europepmc.org/articles/PMC10238622/
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031274190
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3fd3ed6625c610275d5ff9ab08420bb6
https://doi.org/10.1007/978-3-031-27420-6_5
https://doi.org/10.1007/978-3-031-27420-6_5
Publikováno v:
7th International Conference on Image Formation in X-Ray Computed Tomography.
Publikováno v:
7th International Conference on Image Formation in X-Ray Computed Tomography.
Cone-beam CT (CBCT)-based online adaptive radiotherapy calls for accurate auto-segmentation to reduce the time cost for physicians. However, deep learning (DL)-based direct segmentation of CBCT images is a challenging task, mainly due to the poor ima
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86efdec6507b457083f28641bc7cdb5c
http://arxiv.org/abs/2206.03413
http://arxiv.org/abs/2206.03413
Autor:
Yongfeng Gao, Ti Bai, Siming Lu, Shaojie Chang, Hao Zhang, Mahsa Hoshmand-Kochi, Zhengrong Liang
Publikováno v:
Medical Imaging 2022: Physics of Medical Imaging.
Publikováno v:
Medical Physics; Apr2023, Vol. 50 Issue 4, p1947-1961, 15p