Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Thuillier Henri"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 43, Iss 1, Pp 225-231 (2023)
Let ℓ be a positive integer, k = 2ℓ or k = 2ℓ + 1, and let n be a positive integer with n ≡ 1 (mod 2ℓ+1). For a prime p, n(p) denotes the largest integer i such that pi divides n. Potočnik and Šajna showed that if there exists a vertex-tr
Externí odkaz:
https://doaj.org/article/93e4b4947a8c4d78be2dbd459c331fc8
Publikováno v:
Discussiones Mathematicae Graph Theory 30, 2 (2010) 289-314
We consider cubic graphs formed with $k \geq 2$ disjoint claws $C_i \sim K_{1, 3}$ ($0 \leq i \leq k-1$) such that for every integer $i$ modulo $k$ the three vertices of degree 1 of $\ C_i$ are joined to the three vertices of degree 1 of $C_{i-1}$ an
Externí odkaz:
http://arxiv.org/abs/1003.5459
Autor:
Fouquet, Jean-Luc, Thuillier, Henri
Publikováno v:
In Discrete Mathematics 6 September 2012 312(17):2652-2659
Let l be a positive integer, k = 2l or k = 2l + 1 and let n be a positive integer with $n \equiv 1$ (mod $2^{l+1}$). Potocnik and Sajna showed that if there exists a vertex-transitive self-complementary k-hypergraph of order n, then for every prime p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8b01b1ec72fc4ddc1ba5009a0e0ceffb
https://hal.archives-ouvertes.fr/hal-02302371/document
https://hal.archives-ouvertes.fr/hal-02302371/document
Publikováno v:
Discussiones Mathematicae: Graph Theory. 2009, Vol. 29 Issue 2, p275-292. 18p. 6 Diagrams.
A strong matching C in a graph G is a matching C such that there is no edge of E(G) connecting any two edges of C. A cubic graph G is a Jaeger's graph if it contains a perfect matching which is a union of two disjoint strong matchings. We survey here
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b7c79bd63f9db58bebd0e1ad06b4365b
https://hal.archives-ouvertes.fr/hal-00601554/file/jaegers-graphs.pdf
https://hal.archives-ouvertes.fr/hal-00601554/file/jaegers-graphs.pdf
Publikováno v:
Discrete Mathematics
Discrete Mathematics, Elsevier, 2012, 312 (14), pp.2109-2118. ⟨10.1016/j.disc.2011.04.017⟩
Discrete Mathematics, Elsevier, 2012, 312 (14), pp.2109-2118. ⟨10.1016/j.disc.2011.04.017⟩
International audience; A graph G is a (Kq; k) vertex stable graph if it contains a Kq after deleting any subset of k vertices. We give a characterization of (Kq; k) vertex stable graphs with minimum size for q = 3; 4; 5.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::461aa8a2c2ac7bf72b0d8a5b011cbc23
https://hal.archives-ouvertes.fr/hal-00934323/document
https://hal.archives-ouvertes.fr/hal-00934323/document
Publikováno v:
[Research Report] 2011, pp.9
A graph G is a (K_q; k) vertex stable graph (q >= 3) if it contains a clique K_q after deleting any subset of k vertices (k >= 0). We are interested by the (K_q; kappa(q)) vertex stable graphs of minimum size where kappa(q) is the maximum value for w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::cd079b6215f6d720c5f0b7204320dc84
https://hal.inria.fr/hal-00648505
https://hal.inria.fr/hal-00648505
Publikováno v:
Discussiones Mathematicae Graph Theory
Proceedings of the 17th 3in1 Workshop on Graph Theory
17th 3in1 Workshop on Graph Theory
Discussiones Mathematicae Graph Theory, University of Zielona Góra, 2010, 30 (2), pp.289-314
Proceedings of the 17th 3in1 Workshop on Graph Theory
17th 3in1 Workshop on Graph Theory
Discussiones Mathematicae Graph Theory, University of Zielona Góra, 2010, 30 (2), pp.289-314
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::db677092b9eac3753d8bc5c16979f2a3
https://hal.archives-ouvertes.fr/hal-00466126
https://hal.archives-ouvertes.fr/hal-00466126
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.