Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Thomases, Becca"'
Polymer solutions can develop chaotic flows, even at low inertia. This purely elastic turbulence is well studied, but little is known about the transition to chaos. In 2D channel flow and parallel shear flow, traveling wave solutions involving cohere
Externí odkaz:
http://arxiv.org/abs/2407.16517
Many microorganisms propel through complex media by deformations of their flagella. The beat is thought to emerge from interactions between forces of the surrounding fluid, passive elastic response from deformations of the flagellum, and active force
Externí odkaz:
http://arxiv.org/abs/2306.03178
Autor:
Thomases, Becca, Guy, Robert D.
Publikováno v:
Journal of non-Newtonian Fluid Mechanics, Volume 269, July 2019, Pages 47-56
Simulations of undulatory swimming in viscoelastic fluids with large amplitude gaits show concentration of polymer elastic stress at the tips of the swimmers.We use a series of related theoretical investigations to probe the origin of these concentra
Externí odkaz:
http://arxiv.org/abs/1904.01646
Publikováno v:
Phys. Rev. Fluids 4, 031301 (2019)
Elastic stress concentration at tips of long slender objects moving in viscoelastic fluids has been observed in numerical simulations, but despite the prevalence of flagellated motion in complex fluids in many biological functions, the physics of str
Externí odkaz:
http://arxiv.org/abs/1809.03563
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Thomases, Becca, Guy, Robert D.
The role of passive body dynamics on the kinematics of swimming micro-organisms in complex fluids is investigated. Asymptotic analysis of small amplitude motions of a finite-length undulatory swimmer in a Stokes-Oldroyd-B fluid is used to predict sha
Externí odkaz:
http://arxiv.org/abs/1610.02388
The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet for fluid problems it only achieves first-order spatial accuracy near embedded boundaries for the velocity field and fails to con
Externí odkaz:
http://arxiv.org/abs/1609.03851
Autor:
Biello, Joseph A., Thomases, Becca
An analytic, asymptotic approximation of the nonlinear steady-state equations for viscoelastic creeping flow, modeled by the Oldroyd-B equations with polymer stress diffusion, is derived. Near the extensional stagnation point the flow stretches and a
Externí odkaz:
http://arxiv.org/abs/1512.03340
Publikováno v:
Journal of Computational Physics, Volume 304 Issue C, January 2016, Pages 252-274
The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical me
Externí odkaz:
http://arxiv.org/abs/1506.07561
The positive definite symmetric polymer conformation tensor possesses a unique symmetric square root that satisfies a closed evolution equation in the Oldroyd-B and FENE-P models of viscoelastic fluid flow. When expressed in terms of the velocity fie
Externí odkaz:
http://arxiv.org/abs/1006.3488