Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Thomas S. Shores"'
Autor:
Thomas S. Shores
Publikováno v:
Applied Linear Algebra and Matrix Analysis ISBN: 9783319747477
The standard vector spaces have many important extra features that we have largely ignored up to this point. These extra features made it possible to do sophisticated calculations in the spaces and enhance our insight into vector spaces by appealing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ddeb7f6caa850b773e162a6bc82bfaed
https://doi.org/10.1007/978-3-319-74748-4_4
https://doi.org/10.1007/978-3-319-74748-4_4
Autor:
Thomas S. Shores
Publikováno v:
Applied Linear Algebra and Matrix Analysis ISBN: 9783319747477
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b1e39bd06699de43337a95c066af6c04
https://doi.org/10.1007/978-3-319-74748-4_2
https://doi.org/10.1007/978-3-319-74748-4_2
Autor:
Thomas S. Shores
Publikováno v:
Applied Linear Algebra and Matrix Analysis ISBN: 9783319747477
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5d6b73aa6a0937ade5a5bc2b04db64da
https://doi.org/10.1007/978-3-319-74748-4_3
https://doi.org/10.1007/978-3-319-74748-4_3
Autor:
Thomas S. Shores
Publikováno v:
Applied Linear Algebra and Matrix Analysis ISBN: 9783319747477
Welcome to the world of linear algebra. The two central problems about which much of the theory of linear algebra revolves are the problem of finding all solutions to a linear system and that of finding an eigensystem for a square matrix. The latter
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5e1f80f09c6e88f33e577e6f72f7ae97
https://doi.org/10.1007/978-3-319-74748-4_1
https://doi.org/10.1007/978-3-319-74748-4_1
Autor:
Thomas S. Shores
Publikováno v:
Applied Linear Algebra and Matrix Analysis ISBN: 9783319747477
The first major problem of linear algebra is to understand how to solve the basis linear system \(A\mathbf {x}=\mathbf {b}\) and what the solution means. We have explored this system from three points of view: In Chapter 1 we approached the problem f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::04edce7a55667fa0452cdb94699cca88
https://doi.org/10.1007/978-3-319-74748-4_5
https://doi.org/10.1007/978-3-319-74748-4_5
Autor:
Thomas S. Shores
Publikováno v:
Applied Linear Algebra and Matrix Analysis ISBN: 9783319747477
Two basic ideas that we learn in geometry are those of length of a line segment and angle between lines. We have already seen how to extend these ideas to the standard vector spaces. The objective of this chapter is to extend these powerful ideas to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1e38a73a7563ff9df024e0e8e35e2480
https://doi.org/10.1007/978-3-319-74748-4_6
https://doi.org/10.1007/978-3-319-74748-4_6
Autor:
Thomas S. Shores
In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. T
Publikováno v:
Applied Mathematics and Computation. 127:149-164
We develop a one-dimensional, nonlinear, nonlocal model that governs the advection and dispersion of a chemical solute that reacts with a porous, mineral fabric to produce a change in porosity and a change in mineralogy. The flow is either driven by
Autor:
Thomas S. Shores, A. M. Denisov
Publikováno v:
Applicable Analysis. 81:725-752
In this article we consider the inverse coefficient problem of recovering the function { ( x ) system of partial differential equations that can be reduced to a second order integro-differential equation $ -u_{xx} + c(x)u_{x} + d\phi (x)u-\gamma d\ph
Autor:
Thomas S. Shores, Alemdar Hasanov
Publikováno v:
Applicable Analysis. 67:11-20
In this paper inverse coefficient problems related to the Sturm-Liouville equation-(k(x)u')' + q(x)u = f (x) are considered. The unknown coefficient k = k(x) is required to belong to a set of admissible coefficients K:0 which is compact in H1. For th