Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Thomas Mauthner"'
Publikováno v:
ATZheavy duty worldwide. 14:10-15
Autor:
Abdelkader Magdy Shaaban, Omar Veledar, Stefan Jaksic, Edin Arnautovic, Christoph Schmittner, Thomas Mauthner
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030839055
SAFECOMP Workshops
SAFECOMP Workshops
Cybersecurity is given a prominent role in curbing risks encountered by novel technologies, specifically the case in the automotive domain, where the possibility of cyberattacks impacts vehicle operation and safety. The potential threats must be iden
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ca82a77b1bc6aced2fd42624064cd4ca
https://doi.org/10.1007/978-3-030-83906-2_2
https://doi.org/10.1007/978-3-030-83906-2_2
Autor:
Thomas Mauthner, Serkan Kiranyaz, Moncef Gabbouj, Horst Possegger, Horst Bischof, Caglar Aytekin
We present a novel approach for spatiotemporal saliency detection by optimizing a unified criterion of color contrast, motion contrast, appearance, and background cues. To this end, we first abstract the video by temporal superpixels. Second, we prop
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::67d4fd80c8f6457e7c073a6b2a490c23
https://hdl.handle.net/10576/30624
https://hdl.handle.net/10576/30624
Autor:
Shengkun Li, Karel Lebeda, Fei Zhao, Siyi Li, Jae-Yeong Lee, Martin Danelljan, Fahad Shahbaz Khan, Ming Tang, Chong Sun, João F. Henriques, Yang Li, Michel Valstar, A. Aydin Alatan, Yifan Wang, Henry Medeiros, Kannappan Palaniappan, Gustav Häger, Hongdong Li, Jae-chan Jeong, Shizeng Yao, Longyin Wen, Yuankai Qi, Zhizhen Chi, Jack Valmadre, Junyu Gao, Madan Kumar Rapuru, Mooyeol Baek, Chang-Ming Chang, Noor M. Al-Shakarji, Dawei Du, Bohyung Han, Jiayi Feng, Jochen Lang, Andrea Vedaldi, Hyemin Lee, Stefan Becker, Bernard Ghanem, Junliang Xing, Luca Bertinetto, Andreas Robinson, Michael Arens, Alan Lukežič, Gao Zhu, Wenbo Li, Stuart Golodetz, Jiří Matas, Alireza Memarmoghadam, Muhammad Haris Khan, Jingjing Xiao, Isabela Drummond, Tony P. Pridmore, Sunglok Choi, Ji-Wan Kim, Xin Li, Krystian Mikolajczyk, Payman Moallem, Mengdan Zhang, Osman Akin, Anton Varfolomieiev, Horst Bischof, Pedro Senna, Dapeng Chen, Filiz Bunyak, Sumithra Kakanuru, Lijun Wang, Alfredo Petrosino, Tomas Vojir, Philip H. S. Torr, Sebastian B. Krah, Yiannis Demiris, Honggang Qi, Mahdieh Poostchi, Lei Qin, Rustam Stolkin, Erhan Gundogdu, Wolfgang Hübner, Gorthi R. K. Sai Subrahmanyam, Naiyan Wang, Jianke Zhu, Jongwon Choi, Weiming Hu, Gustavo Fernandez, Mario Edoardo Maresca, Ales Leonardis, Pong C. Yuen, Richard Bowden, Horst Possegger, Matthias Mueller, Tao Hu, Giorgio Roffo, Simon Hadfield, Zhenyu He, Andres Solis Montero, Hyung Jin Chang, Alvaro Garcia-Martin, Luka Cehovin, Matej Kristan, Xiaomeng Wang, Ondrej Miksik, Changsheng Xu, Zhan Xu, Guna Seetharaman, Zejian Yuan, Huchuan Lu, José M. Martínez, Andy J. Ma, Xiangyuan Lan, Qingming Huang, Ryan Walsh, Aykut Erdem, Zexiong Cai, Jaeil Cho, Rafael Martin-Nieto, Deepak Mishra, Michael Felsberg, Simone Melzi, Abhinav Gupta, Erkut Erdem, Fatih Porikli, Vincenzo Santopietro, Roman Pflugfelder, Guilherme Sousa Bastos, Bin Liu, Thomas Mauthner, Daijin Kim, Ke Gao, Nana Fan, Rengarajan Pelapur, Jin-Young Choi, Shengping Zhang, Francesco Battistone, Siwei Lyu, Tianzhu Zhang, Dit-Yan Yeung, Brais Martinez, Jiyeoup Jeong, Jin Gao, Robert Laganiere, Hyeonseob Nam
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319488806
ECCV Workshops (2)
ECCV Workshops (2)
The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::953156f54fc532423c7361286005ed3a
http://hdl.handle.net/11562/961687
http://hdl.handle.net/11562/961687
Autor:
Jiří Matas, Gao Zhu, Alvaro Garcia-Martin, Wenbo Li, Michael Felsberg, Shengkun Li, Karel Lebeda, Horst Bischof, Wolfgang Hübner, Anton Varfolomieiev, Michael Arens, Tomas Vojir, Aykut Erdem, Chang-Ming Chang, Zhenyu He, Jiayi Feng, Andres Solis Montero, Mario Edoardo Maresca, Rafael Martin-Nieto, Mahdieh Poostchi, Abdelrahman Eldesokey, Yang Li, Philip H. S. Torr, Xin Li, Erkut Erdem, Fatih Porikli, Jianke Zhu, Fei Zhao, Simon Hadfield, Shizeng Yao, Ming Tang, Amanda Berg, Ales Leonardis, Matej Kristan, Sebastian B. Krah, Honggang Qi, Jochen Lang, Hongdong Li, Gustav Häger, Luca Bertinetto, Longyin Wen, Rengarajan Pelapur, Dawei Du, Noor M. Al-Shakarji, Bohyung Han, Stefan Becker, Alan Lukežič, Luka Cehovin, Stuart Golodetz, Osman Akin, Krystian Mikolajczyk, Filiz Bunyak, Vincenzo Santopietro, Alfredo Petrosino, Roman Pflugfelder, Guna Seetharaman, Mooyeol Baek, Fahad Shahbaz Khan, Ke Gao, Martin Danelljan, Hyeonseob Nam, Kannappan Palaniappan, Jack Valmadre, Qingming Huang, Tao Hu, Zhan Xu, Ondrej Miksik, José M. Martínez, Gustavo Fernandez, Jörgen Ahlberg, Richard Bowden, Horst Possegger, Nana Fan, Francesco Battistone, Siwei Lyu, Robert Laganiere, Thomas Mauthner
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319488806
ECCV Workshops (2)
ECCV Workshops (2)
The Thermal Infrared Visual Object Tracking challenge 2016, VOT-TIR2016, aims at comparing short-term single-object visual trackers that work on thermal infrared (TIR) sequences and do not apply pre-learned models of object appearance. VOT-TIR2016 is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50750d4f41dc4feeea46a28a829cfd9d
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133773
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133773
Publikováno v:
International Journal of Performance Analysis in Sport. 9:332-343
Position determination of game analysts is often performed by subjective visual estimation. The aim of this study was to evaluate human position estimations for setting actions in beach volleyball....
Publikováno v:
CVPR
We present a novel video saliency detection method to support human activity recognition and weakly supervised training of activity detection algorithms. Recent research has emphasized the need for analyzing salient information in videos to minimize
Publikováno v:
CVPR
In this paper, we address the problem of model-free online object tracking based on color representations. According to the findings of recent benchmark evaluations, such trackers often tend to drift towards regions which exhibit a similar appearance
Autor:
Kristoffer Öfjäll, Zhen Lei, Fahad Shahbaz Khan, Karel Lebeda, Tomas Vojir, Ming-Ming Cheng, Jorge Batista, Georg Nebehay, Dominik Pangersic, Bohyung Han, Ales Leonardis, Jin-Woo Choi, Lei Qin, Seunghoon Hong, Yuankai Qi, Cherkeng Heng, Amir Saffari, Jiri Matas, Jijia Li, Gustav Häger, Weiyao Lin, Christophe Garcia, Stan Z. Li, Alfredo Petrosino, Martin Danelljan, Michael Felsberg, Kwang Moo Yi, Sam Hare, Mario Edoardo Maresca, Joost van de Weijer, Bo Li, Hyeonseob Nam, Aleksandar Dimitriev, Horst Bischof, Matej Kristan, Simon Hadfield, Vibhav Vineet, Philip H. S. Torr, Zhiheng Niu, Luka Cehovin, Jianke Zhu, Richard Bowden, Horst Possegger, Longyin Wen, Alan Lukezic, Stuart Golodetz, Thomas Mauthner, Gustavo Fernandez, Jin-Young Choi, Samantha Yueying Lim, Qingming Huang, João F. Henriques, Yang Li, Stefan Duffner, Roman Pflugfelder, Franci Oven, Shengcai Liao
Publikováno v:
Computer Vision-ECCV 2014 Workshops ISBN: 9783319161808
ECCV Workshops (2)
Workshop on Visual Object Tracking Challenge (VOT2014)-ECCV
Workshop on Visual Object Tracking Challenge (VOT2014)-ECCV, Sep 2014, Zurich, Switzerland. pp.1-27
ECCV Workshops (2)
Workshop on Visual Object Tracking Challenge (VOT2014)-ECCV
Workshop on Visual Object Tracking Challenge (VOT2014)-ECCV, Sep 2014, Zurich, Switzerland. pp.1-27
The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are presented. The number of tested trackers makes VOT 20
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ec65e47dd03dfe9e0bfab5419a98ce2
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121006
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121006
Publikováno v:
CVPR
TU Graz
TU Graz
Robust multi-object tracking-by-detection requires the correct assignment of noisy detection results to object trajectories. We address this problem by proposing an online approach based on the observation that object detectors primarily fail if obje