Zobrazeno 1 - 10
of 231
pro vyhledávání: '"Thomas Gabor"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ACM Transactions on Quantum Computing. 4:1-18
Constrained optimization problems are usually translated to (naturally unconstrained) Ising formulations by introducing soft penalty terms for the previously hard constraints. In this work, we empirically demonstrate that assigning the appropriate we
Publikováno v:
In Journal of Systems Architecture February 2017 73:17-27
Autor:
Thomas, Gabor
Originating in the seventh century as one of the ‘Old Minsters’ of Kent, Lyminge has one of the longest continuous Christian histories in Britain. Drawing upon the results of two campaigns of re-investigation in the early 1990s and 2019, this pap
Externí odkaz:
https://library.oapen.org/handle/20.500.12657/60888
Autor:
Varga Thomas Gabor Johan
Publikováno v:
Journal Of Oral Medicine And Dental Research. 1:1-13
Publikováno v:
Norwegian Archaeological Review. Jun-Nov 2021, Vol. 54 Issue 1/2, p75-79. 5p.
Autor:
Thomas, Gabor1 gabor.thomas@reading.ac.uk, Scull, Christopher2 c.scull@ucl.ac.uk
Publikováno v:
Norwegian Archaeological Review. Jun-Nov 2021, Vol. 54 Issue 1/2, p1-28. 28p.
Publikováno v:
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
Autor:
Thomas Gabor, Michael Lachner, Nico Kraus, Christoph Roch, Jonas Stein, Daniel Ratke, Claudia Linnhoff-Popien
Publikováno v:
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
Autor:
Thomy Phan, Lenz Belzner, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, Claudia Linnhoff-Popien
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence. 35:11308-11316
We focus on resilience in cooperative multi-agent systems, where agents can change their behavior due to udpates or failures of hardware and software components. Current state-of-the-art approaches to cooperative multi-agent reinforcement learning (M