Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Thomas F Schranghamer"'
Autor:
Yikai Zheng, Harikrishnan Ravichandran, Thomas F. Schranghamer, Nicholas Trainor, Joan M. Redwing, Saptarshi Das
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
Bayesian networks are applied to resolve several types of probabilistic problems. Here, Das et al. develop a stochastic computing hardware platform using two-dimensional memtransistors for the implementation of Bayesian network with high accuracy.
Externí odkaz:
https://doaj.org/article/525b6376437e49baa91a176e4099bade
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of w
Externí odkaz:
https://doaj.org/article/a130631a23e64efc851890dbc7347d88
Autor:
Thomas F. Schranghamer, Najam U. Sakib, Muhtasim Ul Karim Sadaf, Shiva Subbulakshmi Radhakrishnan, Rahul Pendurthi, Ama Duffie Agyapong, Sergei P. Stepanoff, Riccardo Torsi, Chen Chen, Joan M. Redwing, Joshua A. Robinson, Douglas E. Wolfe, Suzanne E. Mohney, Saptarshi Das
Publikováno v:
Nano Letters. 23:3426-3434
Autor:
Shakya Chakrabarti, Akshay Wali, Harikrishnan Ravichandran, Shamik Kundu, Thomas F. Schranghamer, Kanad Basu, Saptarshi Das
Publikováno v:
ACS Applied Nano Materials. 5:14447-14455
Autor:
Thomas F. Schranghamer, Andrew Pannone, Harikrishnan Ravichandran, Sergei P. Stepanoff, Nicholas Trainor, Joan M. Redwing, Douglas E. Wolfe, Saptarshi Das
Publikováno v:
ACS Applied Materials & Interfaces.
Autor:
Subir Ghosh, Yikai Zheng, Shiva Subbulakshmi Radhakrishnan, Thomas F Schranghamer, Saptarshi Das
Publikováno v:
Nano Letters.
Autor:
Darsith Jayachandran, Andrew Pannone, Mayukh Das, Thomas F. Schranghamer, Dipanjan Sen, Saptarshi Das
Publikováno v:
ACS nano.
Detecting a potential collision at night is a challenging task owing to the lack of discernible features that can be extracted from the available visual stimuli. To alert the driver or, alternatively, the maneuvering system of an autonomous vehicle,
Autor:
Harikrishnan Ravichandran, Yikai Zheng, Thomas F Schranghamer, Nicholas Trainor, Joan M. Redwing, Saptarshi Das
Publikováno v:
Advanced materials (Deerfield Beach, Fla.).
As the energy and hardware investments necessary for conventional high-precision digital computing continues to explode in the emerging era of artificial intelligence, deep learning, and big data, a change in paradigm that can trade precision for ene
Autor:
Parijat Sengupta, Saptarshi Das, Shiva Subbulakshmi Radhakrishnan, Thomas F. Schranghamer, Drew Buzzell, Akhil Dodda
Publikováno v:
Nature Electronics. 4:364-374
Graphene has a range of properties that makes it suitable for building devices for the Internet of Things. However, the deployment of such devices will also likely require the development of suitable graphene-based hardware security primitives. Here
Autor:
Shiva Subbulakshmi Radhakrishnan, Shakya Chakrabarti, Dipanjan Sen, Mayukh Das, Thomas F. Schranghamer, Amritanand Sebastian, Saptarshi Das
Publikováno v:
Advanced materials (Deerfield Beach, Fla.). 34(48)
The representation of external stimuli in the form of action potentials or spikes constitutes the basis of energy efficient neural computation that emerging spiking neural networks (SNNs) aspire to imitate. With recent evidence suggesting that inform