Zobrazeno 1 - 10
of 198
pro vyhledávání: '"Thomas, Garrett A."'
Autor:
Thomas, Garrett, Cheng, Ching-An, Loynd, Ricky, Frujeri, Felipe Vieira, Vineet, Vibhav, Jalobeanu, Mihai, Kolobov, Andrey
A rich representation is key to general robotic manipulation, but existing approaches to representation learning require large amounts of multimodal demonstrations. In this work we propose PLEX, a transformer-based architecture that learns from a sma
Externí odkaz:
http://arxiv.org/abs/2303.08789
Safe reinforcement learning is a promising path toward applying reinforcement learning algorithms to real-world problems, where suboptimal behaviors may lead to actual negative consequences. In this work, we focus on the setting where unsafe states c
Externí odkaz:
http://arxiv.org/abs/2202.07789
Autor:
Mehdi Sadighi, PhD, Danielle Kara, PhD, Dingheng Mai, Shi Chen, BSc, Thomas Garrett, BSc, Christopher Nguyen, PhD, Deborah Kwon, MD, FSCMR
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 26, Iss , Pp 100177- (2024)
Externí odkaz:
https://doaj.org/article/2e4e03036c324d60959b9e16f25ca4d3
Autor:
Shi Chen, BSc, Danielle Kara, PhD, Thomas Garrett, BSc, Deborah Kwon, MD, FSCMR, Christopher Nguyen, PhD, FSCMR
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 26, Iss , Pp 100255- (2024)
Externí odkaz:
https://doaj.org/article/96b6b498b0b64222a8b165b0898cb5b7
Autor:
Danielle Kara, PhD, Yuchi Liu, PhD, Shi Chen, BSc, Thomas Garrett, BSc, Deborah Kwon, MD, FSCMR, Christopher Nguyen, PhD, FSCMR
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 26, Iss , Pp 100257- (2024)
Externí odkaz:
https://doaj.org/article/53d506f21e6d4982916a5921a6ddac0c
Autor:
Animesh Tandon, MD, MSc, Thomas Garrett, BSc, Danielle Kara, PhD, Shi Chen, BSc, Christopher Nguyen, PhD, FSCMR
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 26, Iss , Pp 100546- (2024)
Externí odkaz:
https://doaj.org/article/3fe07646f1b54f09ac6e4389e1bf3887
Meta-reinforcement learning (meta-RL) aims to learn from multiple training tasks the ability to adapt efficiently to unseen test tasks. Despite the success, existing meta-RL algorithms are known to be sensitive to the task distribution shift. When th
Externí odkaz:
http://arxiv.org/abs/2006.08875
Autor:
Yu, Tianhe, Thomas, Garrett, Yu, Lantao, Ermon, Stefano, Zou, James, Levine, Sergey, Finn, Chelsea, Ma, Tengyu
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dang
Externí odkaz:
http://arxiv.org/abs/2005.13239
The aim of multi-task reinforcement learning is two-fold: (1) efficiently learn by training against multiple tasks and (2) quickly adapt, using limited samples, to a variety of new tasks. In this work, the tasks correspond to reward functions for env
Externí odkaz:
http://arxiv.org/abs/1907.04964
In this work, motivated by recent manufacturing trends, we investigate autonomous robotic assembly. Industrial assembly tasks require contact-rich manipulation skills, which are challenging to acquire using classical control and motion planning appro
Externí odkaz:
http://arxiv.org/abs/1803.07635