Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Thinh Tuan Chu"'
Autor:
Md Sharif-Islam, Julius H. J. van der Werf, Mark Henryon, Thinh Tuan Chu, Benjamin J. Wood, Susanne Hermesch
Publikováno v:
Genetics Selection Evolution, Vol 56, Iss 1, Pp 1-10 (2024)
Abstract Background In this study, we tested whether genotyping both live and dead animals (GSD) realises more genetic gain for post-weaning survival (PWS) in pigs compared to genotyping only live animals (GOS). Methods Stochastic simulation was used
Externí odkaz:
https://doaj.org/article/9f05530cd8794cc2b4394c75e1ca6155
Autor:
Peter Skov Kristensen, Pernille Sarup, Dario Fé, Jihad Orabi, Per Snell, Linda Ripa, Marius Mohlfeld, Thinh Tuan Chu, Joakim Herrström, Ahmed Jahoor, Just Jensen
Publikováno v:
Frontiers in Plant Science, Vol 14 (2023)
Genomic models for prediction of additive and non-additive effects within and across different heterotic groups are lacking for breeding of hybrid crops. In this study, genomic prediction models accounting for incomplete inbreeding in parental lines
Externí odkaz:
https://doaj.org/article/27d7b0e0acdc419ab4bd953354ff8533
Publikováno v:
Genetics Selection Evolution, Vol 53, Iss 1, Pp 1-16 (2021)
Abstract Background Social genetic effects (SGE) are the effects of the genotype of one animal on the phenotypes of other animals within a social group. Because SGE contribute to variation in economically important traits for pigs, the inclusion of S
Externí odkaz:
https://doaj.org/article/4f8c6a6966824192a7c18881b00b84a6
Autor:
Thinh Tuan Chu, Anders Christian Sørensen, Mogens Sandø Lund, Kristian Meier, Torben Nielsen, Guosheng Su
Publikováno v:
Frontiers in Genetics, Vol 11 (2020)
Selective genotyping of phenotypically superior animals may lead to bias and less accurate genomic breeding values (GEBV). Performing selective genotyping based on phenotypes measured in the breeding environment (B) is not necessarily a good strategy
Externí odkaz:
https://doaj.org/article/8584ac5e99e74d7f8f7533bee2b54589
Autor:
Kristensen, Peter Skov, Sarup, Pernille, Fé, Dario, Orabi, Jihad, Snell, Per, Ripa, Linda, Mohlfeld, Marius, Thinh Tuan Chu, Herrström, Joakim, Jahoor, Ahmed, Jensen, Just
Publikováno v:
Frontiers in Plant Science; 2023, p01-14, 14p
Publikováno v:
Rome, H J S, Chu, T T, Marois, D, Huang, C-H, Madsen, P & Jensen, J 2021, ' Accounting for genetic architecture for body weight improves accuracy of predicting breeding values in a commercial line of broilers ', Journal of Animal Breeding and Genetics, vol. 138, no. 5, 528-540 . https://doi.org/10.1111/jbg.12546
Journal of Animal Breeding and Genetics
Journal of Animal Breeding and Genetics
BLUP (best linear unbiased prediction) is the standard for predicting breeding values, where different assumptions can be made on variance–covariance structure, which may influence predictive ability. Herein, we compare accuracy of prediction of fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e3f7687cf071c7afb3c759e7e8194aed
https://pure.au.dk/portal/da/publications/accounting-for-genetic-architecture-for-body-weight-improves-accuracy-of-predicting-breeding-values-in-a-commercial-line-of-broilers(a5dd8d89-c58b-49a7-a493-abb093664f1b).html
https://pure.au.dk/portal/da/publications/accounting-for-genetic-architecture-for-body-weight-improves-accuracy-of-predicting-breeding-values-in-a-commercial-line-of-broilers(a5dd8d89-c58b-49a7-a493-abb093664f1b).html
Autor:
Torben Nielsen, Anders Christian Sørensen, Guosheng Su, Thinh Tuan Chu, Mogens Sandø Lund, Kristian Meier
Publikováno v:
Frontiers in Genetics, Vol 11 (2020)
Chu, T T, Sørensen, A C, Lund, M S, Meier, K, Nielsen, T & Su, G 2020, ' Phenotypically Selective Genotyping Realizes More Genetic Gains in a Rainbow Trout Breeding Program in the Presence of Genotype-by-Environment Interactions ', Frontiers in Genetics, vol. 11, 866 . https://doi.org/10.3389/fgene.2020.00866
Frontiers in Genetics
Chu, T T, Sørensen, A C, Lund, M S, Meier, K, Nielsen, T & Su, G 2020, ' Phenotypically Selective Genotyping Realizes More Genetic Gains in a Rainbow Trout Breeding Program in the Presence of Genotype-by-Environment Interactions ', Frontiers in Genetics, vol. 11, 866 . https://doi.org/10.3389/fgene.2020.00866
Frontiers in Genetics
Selective genotyping of phenotypically superior animals may lead to bias and less accurate genomic breeding values (GEBV). Performing selective genotyping based on phenotypes measured in the breeding environment (B) is not necessarily a good strategy
Autor:
Danye Marois, Per Madsen, John M. Henshall, Thinh Tuan Chu, Just Jensen, E. Norberg, Lei Wang
Publikováno v:
Chu, T T, Madsen, P, Norberg, E, Wang, L, Marois, D, Henshall, J & Jensen, J 2020, ' Genetic analysis on body weight at different ages in broiler chicken raised in commercial environment ', Journal of Animal Breeding and Genetics (Online), vol. 137, no. 2, pp. 245-259 . https://doi.org/10.1111/jbg.12448
Journal of Animal Breeding and Genetics 137 (2020) 2
Journal of Animal Breeding and Genetics, 137(2), 245-259
Journal of Animal Breeding and Genetics 137 (2020) 2
Journal of Animal Breeding and Genetics, 137(2), 245-259
A multivariate model was developed and used to estimate genetic parameters of body weight (BW) at 1–6 weeks of age of broilers raised in a commercial environment. The development of model was based on the predictive ability of breeding values evalu
Publikováno v:
Genetics, Selection, Evolution : GSE
Genetics Selection Evolution, Vol 51, Iss 1, Pp 1-12 (2019)
Genetics Selection Evolution, 51(1)
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2019, 51 (1), pp.64. ⟨10.1186/s12711-019-0509-z⟩
Genetics Selection Evolution 51 (2019) 1
Chu, T T, Bastiaansen, J W M, Berg, P & Komen, H 2019, ' Optimized grouping to increase accuracy of prediction of breeding values based on group records in genomic selection breeding programs ', Genetics Selection Evolution, vol. 51, no. 1, 64 . https://doi.org/10.1186/s12711-019-0509-z
Genetics Selection Evolution, Vol 51, Iss 1, Pp 1-12 (2019)
Genetics Selection Evolution, 51(1)
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2019, 51 (1), pp.64. ⟨10.1186/s12711-019-0509-z⟩
Genetics Selection Evolution 51 (2019) 1
Chu, T T, Bastiaansen, J W M, Berg, P & Komen, H 2019, ' Optimized grouping to increase accuracy of prediction of breeding values based on group records in genomic selection breeding programs ', Genetics Selection Evolution, vol. 51, no. 1, 64 . https://doi.org/10.1186/s12711-019-0509-z
BackgroundPhenotypic records of group means or group sums are a good alternative to individual records for some difficult to measure, but economically important traits such as feed efficiency or egg production. Accuracy of predicted breeding values b
Autor:
John M. Henshall, John W M Bastiaansen, Hélène Romé, Thinh Tuan Chu, Just Jensen, Peer Berg, Danye Marois
Publikováno v:
Genetics Selection Evolution, Vol 51, Iss 1, Pp 1-13 (2019)
Genetics, Selection, Evolution : GSE
Genetics Selection Evolution 51 (2019) 1
Genetics Selection Evolution, 51(1)
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2019, 51 (1), pp.50. ⟨10.1186/s12711-019-0493-3⟩
Chu, T T, Bastiaansen, J WM, Berg, P, Rome, H J S, Marois, D, Henshall, J & Jensen, J 2019, ' Use of genomic information to exploit genotype-by-environment interactions for body weight of broiler chicken in bio-secure and production environments ', Genetics Selection Evolution, vol. 51, 50 . https://doi.org/10.1186/s12711-019-0493-3
Genetics, Selection, Evolution : GSE
Genetics Selection Evolution 51 (2019) 1
Genetics Selection Evolution, 51(1)
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2019, 51 (1), pp.50. ⟨10.1186/s12711-019-0493-3⟩
Chu, T T, Bastiaansen, J WM, Berg, P, Rome, H J S, Marois, D, Henshall, J & Jensen, J 2019, ' Use of genomic information to exploit genotype-by-environment interactions for body weight of broiler chicken in bio-secure and production environments ', Genetics Selection Evolution, vol. 51, 50 . https://doi.org/10.1186/s12711-019-0493-3
BackgroundThe increase in accuracy of prediction by using genomic information has been well-documented. However, benefits of the use of genomic information and methodology for genetic evaluations are missing when genotype-by-environment interactions