Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Thin, Achille"'
Importance Sampling (IS) is a method for approximating expectations under a target distribution using independent samples from a proposal distribution and the associated importance weights. In many applications, the target distribution is known only
Externí odkaz:
http://arxiv.org/abs/2207.06364
Autor:
Thin, Achille, Kotelevskii, Nikita, Doucet, Arnaud, Durmus, Alain, Moulines, Eric, Panov, Maxim
Variational auto-encoders (VAE) are popular deep latent variable models which are trained by maximizing an Evidence Lower Bound (ELBO). To obtain tighter ELBO and hence better variational approximations, it has been proposed to use importance samplin
Externí odkaz:
http://arxiv.org/abs/2106.15921
Autor:
Thin, Achille, Janati, Yazid, Corff, Sylvain Le, Ollion, Charles, Doucet, Arnaud, Durmus, Alain, Moulines, Eric, Robert, Christian
Sampling from a complex distribution $\pi$ and approximating its intractable normalizing constant Z are challenging problems. In this paper, a novel family of importance samplers (IS) and Markov chain Monte Carlo (MCMC) samplers is derived. Given an
Externí odkaz:
http://arxiv.org/abs/2103.10943
Autor:
Thin, Achille, Kotelevskii, Nikita, Andrieu, Christophe, Durmus, Alain, Moulines, Eric, Panov, Maxim
Markov Chain Monte Carlo (MCMC) is a class of algorithms to sample complex and high-dimensional probability distributions. The Metropolis-Hastings (MH) algorithm, the workhorse of MCMC, provides a simple recipe to construct reversible Markov kernels.
Externí odkaz:
http://arxiv.org/abs/2012.15550
Autor:
Thin, Achille, Kotelevskii, Nikita, Denain, Jean-Stanislas, Grinsztajn, Leo, Durmus, Alain, Panov, Maxim, Moulines, Eric
In this contribution, we propose a new computationally efficient method to combine Variational Inference (VI) with Markov Chain Monte Carlo (MCMC). This approach can be used with generic MCMC kernels, but is especially well suited to \textit{MetFlow}
Externí odkaz:
http://arxiv.org/abs/2002.12253
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Stojanova, Marija, Arbelet, Pierre, Baudin, François, Bouton, Nicolas, Caria, Giovanni, Pacini, Lorenza, Proix, Nicolas, Quibel, Edouard, Thin, Achille, Barré, Pierre
Publikováno v:
Biogeosciences; 2024, Vol. 21 Issue 18, p4229-4237, 9p
Autor:
Stojanova, Marija, Arbelet, Pierre, Baudin, François, Bouton, Nicolas, Caria, Giovanni, Pacini, Lorenza, Proix, Nicolas, Quibel, Edouard, Thin, Achille, Barré, Pierre
Publikováno v:
EGUsphere; 3/4/2024, p1-12, 12p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Thin, Achille, Janati, Yazid, Le Corff, Sylvain, Ollion, Charles, Doucet, Arnaud, Durmus, Alain, Moulines, Eric, Robert, Christian
Simultaneously sampling from a complex distribution with intractable normalizing constant and approximating expectations under this distribution is a notoriously challenging problem. We introduce a novel scheme, Invertible Flow Non Equilibrium Sampli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::44f994e585ffb1541422a3d000f10940
https://hal.archives-ouvertes.fr/hal-03168489/file/infine_arxiv.pdf
https://hal.archives-ouvertes.fr/hal-03168489/file/infine_arxiv.pdf