Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Thierry Barbot"'
Autor:
Thierry Barbot, François Fillastre
Publikováno v:
In the Tradition of Thurston ISBN: 9783030559274
Since the work of W.P. Thurston, some maps from Teichmuller space into itself can be described using the extrinsic geometry of surfaces in three dimensional hyperbolic space. Similarly, since the work of G. Mess, some of these maps can be described u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0b233555d6cdb5dad9b9d4c057ec345c
https://doi.org/10.1007/978-3-030-55928-1_16
https://doi.org/10.1007/978-3-030-55928-1_16
Publikováno v:
Annales de l'Institut Fourier. 68:2697-2741
In the paper "Pappus's theorem and the modular group", R. Schwartz constructed a 2-dimensional family of faithful representations $\rho_\Theta$ of the modular group $\mathrm{PSL}(2,\mathbb{Z})$ into the group $\mathscr{G}$ of projective symmetries of
Autor:
Carlos Maquera, Thierry Barbot
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Mathematische Zeitschrift
Mathematische Zeitschrift, 2017, 287 (3-4), pp.1279-1305. ⟨10.1007/s00209-017-1868-1⟩
Universidade de São Paulo (USP)
instacron:USP
Mathematische Zeitschrift
Mathematische Zeitschrift, 2017, 287 (3-4), pp.1279-1305. ⟨10.1007/s00209-017-1868-1⟩
We consider Anosov actions of a Lie group G of dimension k on a closed manifold of dimension $$k+n$$ . We introduce the notion of Nil-Anosov action of G (which includes the case where G is nilpotent) and establishes the invariance by the entire group
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::391f556220d8a5e6bcde72022073b979
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
Communications in Mathematical Physics, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
Communications in Mathematical Physics, Springer Verlag, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
Communications in Mathematical Physics, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities of angles less than $2\pi$ along a time-like graph $\Gamma$. To each such space we associate a graph and a finite family of pairs of hyper
Autor:
Carlos Maquera, Thierry Barbot
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Topology and its Applications
Topology and its Applications, 2013, 160 (1), pp.199-219. ⟨10.1016/j.topol.2012.10.012⟩
Universidade de São Paulo (USP)
instacron:USP
Topology and its Applications
Topology and its Applications, 2013, 160 (1), pp.199-219. ⟨10.1016/j.topol.2012.10.012⟩
In this paper we classify algebraic Anosov actions of nilpotent Lie groups on closed manifolds, extending the previous results by P. Tomter. We show that they are all nil-suspensions over either suspensions of Anosov actions of Z^k on nilmanifolds, o
Publikováno v:
Communications in Mathematical Physics, 308(1), 147--200. (2011).
We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities along a graph $\Gamma$. We impose physically relevant conditions on the cone singularities, e.g. positivity of mass (angle less than $2\pi
Autor:
Carlos Maquera, Thierry Barbot
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 29:803-822
In this paper, we consider codimension one Anosov actions of $\RR^k,\ k\geq 1,$ on closed connected orientable manifolds of dimension $n+k$ with $n\geq 3$. We show that the fundamental group of the ambient manifold is solvable if and only if the weak
Autor:
Thierry Barbot, Carlos Maquera
Publikováno v:
Ergodic Theory and Dynamical Systems. 31:1-22
We consider Anosov actions of ℝk, k≥2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of ℝk has dimension one. We prove that if the ambient manifold has dimensio
Autor:
Thierry Barbot
Publikováno v:
Advances in Theoretical and Mathematical Physics. 12:1-66
We study the causality relation in the $3$-dimensional anti-de Sitter space AdS and its conformal boundary $\mbox{Ein}_2$. To any closed achronal subset $\Lambda$ in $\mbox{Ein}_2$ we associate the invisible domain $E(\Lambda)$ from $\Lambda$ in AdS.
Autor:
Thierry Barbot
Publikováno v:
Advances in Theoretical and Mathematical Physics. 12:1209-1257
This paper is the continuation of [8]. We essentially prove that the familly of strongly causal spacetimes defined in [8] associated to generic achronal subsets in $\mbox{Ein}_2$ contains all the examples of BTZ multi black-holes. It provides new ele