Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Thiebaut, Jocelyn"'
In the paper, we define a new parameter for tournaments called degreewidth which can be seen as a measure of how far is the tournament from being acyclic. The degreewidth of a tournament $T$ denoted by $\Delta(T)$ is the minimum value $k$ for which w
Externí odkaz:
http://arxiv.org/abs/2212.06007
Autor:
Bessy, Stéphane, Thiebaut, Jocelyn
Let $D$ be a $k$-regular bipartite tournament on $n$ vertices. We show that, for every $p$ with $2 \le p \le n/2-2$, $D$ has a cycle $C$ of length $2p$ such that $D \setminus C$ is hamiltonian unless $D$ is isomorphic to the special digraph $F_{4k}$.
Externí odkaz:
http://arxiv.org/abs/2102.04514
We prove a recent conjecture of Beisegel et al. that for every positive integer k, every graph containing an induced P_k also contains an avoidable P_k. Avoidability generalises the notion of simpliciality best known in the context of chordal graphs.
Externí odkaz:
http://arxiv.org/abs/1908.03788
Numerous problems consisting in identifying vertices in graphs using distances are useful in domains such as network verification and graph isomorphism. Unifying them into a meta-problem may be of main interest. We introduce here a promising solution
Externí odkaz:
http://arxiv.org/abs/1810.03868
Given a tournament $T$, the problem MaxCT consists of finding a maximum (arc-disjoint) cycle packing of $T$. In the same way, MaxTT corresponds to the specific case where the collection of cycles are triangles (i.e. directed 3-cycles). Although MaxCT
Externí odkaz:
http://arxiv.org/abs/1802.06669
Given a tournament T and a positive integer k, the C_3-Pakcing-T problem asks if there exists a least k (vertex-)disjoint directed 3-cycles in T. This is the dual problem in tournaments of the classical minimal feedback vertex set problem. Surprising
Externí odkaz:
http://arxiv.org/abs/1707.04220
Autor:
Bessy, Stéphane1 (AUTHOR) stephane.bessy@lirmm.fr, Thiebaut, Jocelyn1 (AUTHOR)
Publikováno v:
Journal of Graph Theory. Jun2023, Vol. 103 Issue 2, p186-211. 26p.
Autor:
Bessy, Stéphane, Thiebaut, Jocelyn
Publikováno v:
Journal of Graph Theory. 103:186-211
Let $D$ be a $k$-regular bipartite tournament on $n$ vertices. We show that, for every $p$ with $2 \le p \le n/2-2$, $D$ has a cycle $C$ of length $2p$ such that $D \setminus C$ is hamiltonian unless $D$ is isomorphic to the special digraph $F_{4k}$.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.