Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Thibault Manneville"'
Autor:
Thibault Manneville, Vincent Pilaud
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings, 28th... (2020)
Graph associahedra are polytopes realizing the nested complex N(G) on connected subgraphs of a graph G.While all known explicit constructions produce polytopes with the same normal fan, the great variety of fan realizationsof classical associahedra a
Externí odkaz:
https://doaj.org/article/b7398bd6bd1d49d0ad133a8f46926d04
Autor:
Bastien Lauras, Thibault Manneville
Réseaux saturés en zone dense, dépendance à la voiture en zone rurale, impact environnemental local et global : tels sont les défis auxquels doit répondre la mobilité. Pour y parvenir, l'évolution de l'urbanisme et des infrastructures de tra
Autor:
Thibault Manneville, Vincent Pilaud
Publikováno v:
Discrete and Computational Geometry
Discrete and Computational Geometry, Springer Verlag, 2019, 61 (3), pp.507-540. ⟨10.1007/s00454-018-0004-2⟩
Discrete and Computational Geometry, Springer Verlag, 2019, 61 (3), pp.507-540. ⟨10.1007/s00454-018-0004-2⟩
Consider $2n$ points on the unit circle and a reference dissection $\mathrm{D}_\circ$ of the convex hull of the odd points. The accordion complex of $\mathrm{D}_\circ$ is the simplicial complex of non-crossing subsets of the diagonals with even endpo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71b3e5eb77b55fc82eed5b9c9c1cf1e6
https://hal.archives-ouvertes.fr/hal-02343579/file/MannevillePilaud_GeometricRealizationsAccordionComplexDissection_DCG.pdf
https://hal.archives-ouvertes.fr/hal-02343579/file/MannevillePilaud_GeometricRealizationsAccordionComplexDissection_DCG.pdf
Publikováno v:
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17), Electronic Notes in Discrete Mathematics
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17)
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17), Aug 2017, Vienne, Austria. pp.107-113, ⟨10.1016/j.endm.2017.06.027⟩
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17)
The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'17), Aug 2017, Vienne, Austria. pp.107-113, ⟨10.1016/j.endm.2017.06.027⟩
International audience; Stokes complexes consist of sets of mutually noncrossing diagonals of a convex polygon, that are in some sense compatible with a reference quadrangulation. Originally defined by Y. Baryshnikov (2001), they were recently revisi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0422ee7c7bd0f3fcfa6227a2e83c082d
https://hal.archives-ouvertes.fr/hal-02345048
https://hal.archives-ouvertes.fr/hal-02345048
Autor:
Thibault Manneville
Consider 2n points on the unit circle and a reference dissection D of the convex hull of the odd points. The accordion complex of D is the simplicial complex of subsets of pairwise noncrossing diagonals with even endpoints that cross a connected set
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c46d5b5ca78e320492d0febbf3ea255d
http://arxiv.org/abs/1704.01534
http://arxiv.org/abs/1704.01534
Autor:
Thibault Manneville
A~$k$-associahedron is a simplicial complex whose facets, called~$k$-triangulations, are the inclusion maximal sets of diagonals of a convex polygon where no~$k+1$ diagonals mutually cross. Such complexes are conjectured for about a decade to have re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d85c5350065b638eb774044096555e28
http://arxiv.org/abs/1608.08491
http://arxiv.org/abs/1608.08491
In their paper proving the Hirsch bound for flag normal simplicial complexes (Math. Oper.~Res.~2014) Adiprasito and Benedetti define the notion of~\emph{combinatorial segment}. The study of the maximal length of these objects provides the upper bound
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7c87c5dd54fbcebd67f4d7ce4ddb65ce
http://arxiv.org/abs/1510.07678
http://arxiv.org/abs/1510.07678
Autor:
Vincent Pilaud, Thibault Manneville
Publikováno v:
Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2017, 150, pp.36-107. ⟨10.1016/j.jcta.2017.02.004⟩
Journal of Combinatorial Theory, Series A, Elsevier, 2017, 150, pp.36-107. ⟨10.1016/j.jcta.2017.02.004⟩
Graph associahedra are natural generalizations of the classical associahedra. They provide polytopal realizations of the nested complex of a graph $G$, defined as the simplicial complex whose vertices are the tubes (i.e. connected induced subgraphs)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f3cdbd3934c6d16f441a4d9f538031a
http://arxiv.org/abs/1501.07152
http://arxiv.org/abs/1501.07152
Publikováno v:
27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Jul 2015, Daejeon, South Korea. pp.345-356
27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Jul 2015, Daejeon, South Korea. pp.345-356
The $n$-dimensional associahedron is a polytope whose vertices correspond to triangulations of a convex $(n + 3)$-gon and whose edges are flips between them. It was recently shown that the diameter of this polytope is $2n - 4$ as soon as $n > 9$. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::470e6f36b8c00633cc005e8e018af32c
https://doi.org/10.46298/dmtcs.2540
https://doi.org/10.46298/dmtcs.2540
Autor:
Thibault Manneville, Stefan Felsner
We consider the number of linear extensions of an N-free order P. We give upper and lower bounds on this number in terms of parameters of the corresponding arc diagram. We propose a dynamic programming algorithm to calculate the number. The algorithm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b8ca1047989b90e5390c7843a651a2e
http://arxiv.org/abs/1311.1612
http://arxiv.org/abs/1311.1612