Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Thiam, El Hadji Abdoulaye"'
For $N\geq 4$, we let $\Omega$ be a bounded domain of $\mathbb{R}^N$ and $\Gamma$ be a closed curve contained in $\Omega$. We study existence of positive solutions $u \in H^1_0\left(\Omega\right)$ to the equation \begin{equation}\label{Atusi} -\Delta
Externí odkaz:
http://arxiv.org/abs/2309.04768
Autor:
Thiam, El Hadji Abdoulaye
We let $\Omega$ be a bounded domain of $\mathbb{R}^3$ and $\Gamma$ be a closed curve contained in $\Omega$. We study existence of positive solutions $u \in H^1_0\left(\Omega\right)$ to the equation $$ -\Delta u+hu=\lambda\rho^{-s_1}_\Gamma u^{5-2s_1}
Externí odkaz:
http://arxiv.org/abs/2309.04767
We consider a bounded domain $\Omega$ of $\mathbb{R}^N$, $N\ge3$, $h$ and $b$ continuous functions on $\Omega$. Let $\Gamma$ be a closed curve contained in $\Omega$. We study existence of positive solutions $u \in H^1_0\left(\Omega\right)$ to the per
Externí odkaz:
http://arxiv.org/abs/2102.12212
We consider normal velocity of smooth sets evolving by the $s-$fractional diffusion. We prove that for small time, the normal velocity of such sets is nearly proportional to the mean curvature of the boundary of the initial set for $s\in [\frac{1}{2}
Externí odkaz:
http://arxiv.org/abs/2101.03354
Autor:
Thiam, El Hadji Abdoulaye
Let $\Omega$ be a smooth bounded domain of $\mathbb{R}^{N+1}$ of boundary $\partial \Omega= \Gamma_1 \cup \Gamma_2$ and such that $\partial \Omega \cap \Gamma_2$ is a neighborhood of $0$, $h \in \mathcal{C}^0(\partial \Omega \cap \Gamma_2) $ and $s \
Externí odkaz:
http://arxiv.org/abs/2006.02292
We study hypersurfaces with fractional mean curvature in N-dimensional Euclidean space. These hypersurfaces are critical points of the fractional perimeter under a volume constraint. We use local inversion arguments to prove existence of smooth branc
Externí odkaz:
http://arxiv.org/abs/1804.01782
Autor:
Thiam, El Hadji Abdoulaye
For $N\geq 4$, we let $\Omega$ to be a smooth bounded domain of $\mathbb{R}^N$, $\Gamma$ a smooth closed submanifold of $\Omega$ of dimension $k$ with $1\leq k \leq N-2$ and $h$ a continuous function defined on $\Omega$. We denote by $\rho_\Gamma\lef
Externí odkaz:
http://arxiv.org/abs/1801.10493
We consider a bounded domain $\Omega$ of $\mathbb{R}^N$, $N\geq 3$, and $h$ a continuous function on $\Omega$. Let $\Gamma$ be a closed curve contained in $\Omega$. We study existence of positive solutions $u\in H^1_0(\Omega)$ to the equation $$ -\De
Externí odkaz:
http://arxiv.org/abs/1702.02202
Autor:
Thiam, El Hadji Abdoulaye
Let $ (M,g) $ be a smooth compact Riemannian manifold of dimension $ N \geq 3 $. Given $p_0 \in M$, $\lambda \in \mathcal{R}$ and $\sigma \in (0,2]$, we study existence and non existence of minimizers of the following quotient: \begin{equation}\label
Externí odkaz:
http://arxiv.org/abs/1504.00968
Autor:
Thiam, El Hadji Abdoulaye
Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $N\geq 3$ and we let $\Sigma$ to be a closed submanifold of dimension $1 \leq k \leq N-2. $ In this paper we study existence and non-existence of minimizers of Hardy inequality with wei
Externí odkaz:
http://arxiv.org/abs/1504.00972