Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Theodore Monovasilis"'
Publikováno v:
Mathematical Methods in the Applied Sciences. 43:1267-1277
Publikováno v:
Mathematical Methods in the Applied Sciences. 42:1955-1966
Publikováno v:
AIP Conference Proceedings.
Publikováno v:
AIP Conference Proceedings.
Publikováno v:
AIP Conference Proceedings.
Publikováno v:
AIP Conference Proceedings.
The numerical integration of Hamiltonian systems is considered in this paper (for the numerical solution of general problems of this category see [9] - [32] and references therein). A classical symplectic and symmetric diagonally implicit Runge-Kutta
Publikováno v:
AIP Conference Proceedings.
Publikováno v:
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019).
The Italy is a country rich of historical buildings, often made up of bricks, which were seriously damaged or suffered collapse after recent devastating earthquakes. In this framework the current work shows the results of instrumental researches and
Autor:
Pierre-Richard Dahoo, Constantin Meis
Publikováno v:
AIP Conference Proceedings : International Conference of Computational Methods in Sciences and Engineering 2018 (ICCMSE-2018)
AIP Conference Proceedings : International Conference of Computational Methods in Sciences and Engineering 2018 (ICCMSE-2018), Mar 2018, Thessaloniki, Greece. pp.020011, ⟨10.1063/1.5079053⟩
AIP Conference Proceedings : International Conference of Computational Methods in Sciences and Engineering 2018 (ICCMSE-2018), Mar 2018, Thessaloniki, Greece. pp.020011, ⟨10.1063/1.5079053⟩
A physical representation of a single photon state is obtained by considering the quantization of the vector potential amplitude α0k at a single photon level α0k=ξωk, where ξ is a constant. For a k-mode and λ-polarization free photon state the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::196b832b107f2bfe25cbab71bf6e282a
https://hal-insu.archives-ouvertes.fr/insu-01943632
https://hal-insu.archives-ouvertes.fr/insu-01943632