Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Theodore K. Boni"'
Autor:
Diabate Nabongo, Theodore K. Boni
Publikováno v:
Electronic Journal of Differential Equations, Vol 2008, Iss 08, Pp 1-9 (2008)
We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.
Externí odkaz:
https://doaj.org/article/0a7477e46b734c449107e7222dfb94db
Autor:
Diabate Nabongo, Theodore K. Boni
Publikováno v:
Mathematical Modelling and Analysis, Vol 13, Iss 4 (2008)
This paper concerns the study of the numerical approximation for the nonlinear parabolic boundary value problem with the source term leading to the quenching in finite time. We find some conditions under which the solution of a semidiscrete form of t
Externí odkaz:
https://doaj.org/article/e63907edda5441e48e05cba00e9e19f4
Autor:
Theodore K. Boni
Publikováno v:
Annales mathématiques Blaise Pascal. 6:13-20
Autor:
Théodore K. Boni, Diabate Nabong
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 26, Iss 1-2, Pp 19-28 (2008)
In this paper, we consider the following initial value problem:U_i'(t) =sum_{jin B} J_{i-j}(U_j(t) - U_i(t)), t geq 0, iin BU_i(0)=varphi_i >0, iin Bwhere B is a bounded subset of Z^d, p > 1, J_ h = (J_i)_{iinB} is a kernel which is nonnegative, symm
Externí odkaz:
https://doaj.org/article/d9b1b8804f0e4f30959f6042c5edb5ba
Autor:
Firmin K. N'gohisse, Théodore K. Boni
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 39, Iss 1 (2010)
This paper concerns the study of a semilinear parabolic equation subject to Neumann boundary conditions and positive initial datum. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quen
Externí odkaz:
https://doaj.org/article/27d77dabddcb47bbac725a40bb64db51
Publikováno v:
Journal of Applied Mathematics, Vol 2008 (2008)
We obtain some conditions under which the positive solution for semidiscretizations of the semilinear equation ut=uxx−a(x,t)f(u), 0
Externí odkaz:
https://doaj.org/article/4c2648849d234297aa733c3fdd1d5b6c