Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Theocharous, Leonidas"'
Autor:
de Berg, Mark, Theocharous, Leonidas
Let $\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set of $n$ points inside $\mathcal{P}$. We prove that there exists, for any $\varepsilon>0$, a set $\mathcal{C} \subset P$ of size $O(1/\varepsilon^2)$ such that the following h
Externí odkaz:
http://arxiv.org/abs/2403.04513
Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected subset of $\mathbb{R}^2$ and let $\mathcal{D}=\{D_1,\ldots,D_n\}$ be a set of geodesic disks with respect to the metric $d$. We prove that $\mathcal{G}^{\times}(\mathcal{D})
Externí odkaz:
http://arxiv.org/abs/2403.04905
Given a set of $n$ points in the Euclidean plane, the $k$-MinSumRadius problem asks to cover this point set using $k$ disks with the objective of minimizing the sum of the radii of the disks. After a long line of research on related problems, it was
Externí odkaz:
http://arxiv.org/abs/2312.08803
Let $F$ be a set of $n$ objects in the plane and let $G(F)$ be its intersection graph. A balanced clique-based separator of $G(F)$ is a set $S$ consisting of cliques whose removal partitions $G(F)$ into components of size at most $\delta n$, for some
Externí odkaz:
http://arxiv.org/abs/2109.09874
Autor:
Bekos, Michael A., Gronemann, Martin, Montecchiani, Fabrizio, Pálvölgyi, Dömötör, Symvonis, Antonios, Theocharous, Leonidas
We study the algorithmic problem of computing drawings of graphs in which $(i)$ each vertex is a disk with fixed radius $\rho$, $(ii)$ each edge is a straight-line segment connecting the centers of the two disks representing its end-vertices, $(iii)$
Externí odkaz:
http://arxiv.org/abs/2005.02082
Autor:
Bekos, Michael A., Gronemann, Martin, Montecchiani, Fabrizio, Pálvölgyi, Dömötör, Symvonis, Antonios, Theocharous, Leonidas
Publikováno v:
In Computational Geometry: Theory and Applications October 2021 98
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites inside a simple polygon P with m edges while staying insi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f746af4368d2b40b4dd17a5a0c03e56
Let F be a set of n objects in the plane and let G^x(F) be its intersection graph. A balanced clique-based separator of G^x(F) is a set S consisting of cliques whose removal partitions G^x(F) into components of size at most δn, for some fixed consta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f737e2129fa7f334dfe5c366c3e72f16
Let F be a set of n objects in the plane and let ����^{��}(F) be its intersection graph. A balanced clique-based separator of ����^{��}(F) is a set ���� consisting of cliques whose removal partitions ����^{�
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::89634390c7c3322050ba440a7a84bea1