Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Thai, Thuan"'
Autor:
Tran Tan Thanh, Nguyen Thi Kha Tu, Lam Anh Nguyet, Cao Thu Thuy, Nguyen Lam Thai Thuan, Nguyen Thi Han Ny, Le Nguyen Truc Nhu, Le Kim Thanh, Nguyen Thi Thu Hong, Nguyen To Anh, Nguyen Thanh Truong, Nguyen Van Vinh Chau, Lam Minh Yen, Phan Van E, Nguyen Phong Thuong, Nguyen Van Truc, Pham Huu Trung, Wee Chee Yap, Rahul Pandey, Sidney Yee, Ruifen Weng, Juthathip Mongkolsapaya, Wanwisa Dejnirattisai, Raph L Hamers, Narisara Chantratita, Gavin Screaton, Susanna J Dunachie, E Yvonne Jones, David I Stuart, Nguyen Thanh Dung, Guy Thwaites, Lin-Fa Wang, Chee Wah Tan, Le Van Tan
Publikováno v:
International Journal of Infectious Diseases, Vol 147, Iss , Pp 107173- (2024)
Objectives: We studied the immunogenicity after primary and booster vaccinations of the Abdala COVID-19 vaccine, a receptor-binding domain protein subunit vaccine, in Vietnamese people by determining the level of neutralization and cross-neutralizati
Externí odkaz:
https://doaj.org/article/9a8af1cae72c4399a2eb6c5de3594acc
Autor:
Quang, Thai Thuan
Denote by $ B_X $ the unit ball of an infinite-dimensional complex Hilbert space $ X. $ Let $\psi \in H(B_X),$ the space of all holomorphic functions on the unit ball $B_X,$ $\varphi \in S(B_X)$ the set of holomorphic self-maps of $B_X. $ Let $C_{\ps
Externí odkaz:
http://arxiv.org/abs/2203.05129
Autor:
Quang, Thai Thuan
Let $ E $ be a space of holomorphic functions on the unit ball $ B_X $ of a Banach space $ X.$ In this work, we introduce a Banach structure associated to $ E $ on the linear space $ WE(Y) $ containing $ Y$-valued holomorphic functions on $ B_X $ suc
Externí odkaz:
http://arxiv.org/abs/2203.03080
Autor:
Quang, Thai Thuan
Let $A$ be a non-projectively-pluripolar set in a Fr\'{e}chet space $E.$ We give sufficient conditions to ensure the convergence on some zero-neighbourhood in $E$ of a (sequence of) formal power series of Fr\'{e}chet-valued continuous homogeneous pol
Externí odkaz:
http://arxiv.org/abs/1901.03825
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (2020) 1095-1112
The aim of this paper is to characterize the nonnegative functions $\varphi$ defined on $(0,\infty)$ for which the Hausdorff operator $$\mathscr H_\varphi f(z)= \int_0^\infty f\left(\frac{z}{t}\right)\frac{\varphi(t)}{t}dt$$ is bounded on the Hardy s
Externí odkaz:
http://arxiv.org/abs/1703.01015
Let $\varphi$ be a nonnegative integrable function on $(0,\infty)$. It is well-known that the Hausdorff operator $\mathcal H_\varphi$ generated by $\varphi$ is bounded on the real Hardy space $H^1(\mathbb R)$. The aim of this paper is to give the exa
Externí odkaz:
http://arxiv.org/abs/1702.03486
Publikováno v:
Journal of Experiential Education; Sep2024, Vol. 47 Issue 3, p380-399, 20p
Autor:
THAI THUAN QUANG1 thaithuanquang@qnu.edu.vn
Publikováno v:
Constructive Mathematical Analysis. Mar2023, Vol. 6 Issue 1, p6-21. 16p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.