Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Théodore K. Boni"'
Autor:
Théodore K. Boni, Diabate Nabong
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 26, Iss 1-2, Pp 19-28 (2008)
In this paper, we consider the following initial value problem:U_i'(t) =sum_{jin B} J_{i-j}(U_j(t) - U_i(t)), t geq 0, iin BU_i(0)=varphi_i >0, iin Bwhere B is a bounded subset of Z^d, p > 1, J_ h = (J_i)_{iinB} is a kernel which is nonnegative, symm
Externí odkaz:
https://doaj.org/article/d9b1b8804f0e4f30959f6042c5edb5ba
Autor:
Firmin K. N'gohisse, Théodore K. Boni
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 39, Iss 1 (2010)
This paper concerns the study of a semilinear parabolic equation subject to Neumann boundary conditions and positive initial datum. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quen
Externí odkaz:
https://doaj.org/article/27d77dabddcb47bbac725a40bb64db51
Publikováno v:
Journal of Applied Mathematics, Vol 2008 (2008)
We obtain some conditions under which the positive solution for semidiscretizations of the semilinear equation ut=uxx−a(x,t)f(u), 0
Externí odkaz:
https://doaj.org/article/4c2648849d234297aa733c3fdd1d5b6c
Autor:
Théodore K. Boni, Firmin K. N'gohisse
Publikováno v:
Acta Mathematica Sinica, English Series. 27:845-862
This paper concerns the study of the numerical approximation for the following initialboundary value problem $$ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t}
Publikováno v:
Computational Methods in Applied Mathematics. 9:339-353
This paper concerns the study of the numerical approximation for the following initial-boundary value problem: ut(x, t) = uxx(x, t)− f(u(1/2, t)), (x, t) ∈ (0, 1)× (0, T ), ux(0, t) = 0, ux(1, t) = 0, t ∈ (0, T ), u(x, 0) = u0(x),
Autor:
Diabate Nabongo, Théodore K. Boni
Publikováno v:
Mathematical Modelling and Analysis; Vol 13 No 4 (2008); 521-538
Mathematical Modelling and Analysis, Vol 13, Iss 4 (2008)
Mathematical Modelling and Analysis, Vol 13, Iss 4 (2008)
This paper concerns the study of the numerical approximation for the nonlinear parabolic boundary value problem with the source term leading to the quenching in finite time. We find some conditions under which the solution of a semidiscrete form of t
Publikováno v:
Journal of Nonlinear Sciences and Applications. :91-101
In this paper, we consider the following initial-boundary value problem 8 > > utt(x;t) = "Lu(x;t) + b(t)f(u(x;t)) in › £ (0;T), u(x;t) = 0 on @› £ (0;T), u(x;0) = 0 in ›; ut(x;0) = 0 in ›; where " is a positive parameter, b 2 C 1 (R+), b(t)
Autor:
Diabate Nabongo, Théodore K. Boni
Publikováno v:
Communications in Analysis and Geometry. 16:865-882
Autor:
Diabate Nabongo, Théodore K. Boni
Publikováno v:
Asymptotic Analysis. 59:27-38
We obtain some conditions under which the positive solution of the numerical approximation for the heat equation ut(x, t) = uxx(x, t),x ∈ (0, 1), t > 0, with the singular boundary condition ux(1, t) = −u−β(1, t), where β > 0 quenches in a fin
Autor:
Théodore K. Boni
Publikováno v:
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 333:795-800
We obtain some conditions under which solutions for semidiscretizations of semilinear parabolic equations extinct in a finite time and estimate their extinction time. A similar study is also undertaken for full discretizations.