Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Teyssier, Lucas"'
Autor:
Teyssier, Lucas, Thévenin, Paul
We prove sharp bounds on the virtual degrees introduced by Larsen and Shalev. This leads to improved bounds on characters of symmetric groups. We then sharpen bounds of Liebeck and Shalev concerning the Witten zeta function. Our main application is a
Externí odkaz:
http://arxiv.org/abs/2411.04347
We consider random walks on finite vertex-transitive graphs $\Gamma$ of bounded degree. We find a simple geometric condition which characterises the cover time fluctuations: the suitably normalised cover time converges to a standard Gumbel variable i
Externí odkaz:
http://arxiv.org/abs/2202.02255
We consider a natural analogue of Brownian motion on free orthogonal quantum groups and prove that it exhibits a cutoff at time $N\ln(N)$. Then, we study the induced classical process on the real line and compute its atoms and density. This enables u
Externí odkaz:
http://arxiv.org/abs/2010.03273
Autor:
Teyssier, Lucas
We present an improved version of Diaconis' upper bound lemma, which is used to compute the limiting value of the distance to stationarity. We then apply it to random transpositions studied by Diaconis and Shahshahani.
Externí odkaz:
http://arxiv.org/abs/1905.08514
Autor:
Teyssier, Lucas
Publikováno v:
The Annals of Probability, 2020 Sep 01. 48(5), 2323-2343.
Externí odkaz:
https://www.jstor.org/stable/26966040
Autor:
Freslon, Amaury1 (AUTHOR) amaury.freslon@math.u-psud.fr, Teyssier, Lucas2 (AUTHOR), Wang, Simeng3 (AUTHOR)
Publikováno v:
Probability Theory & Related Fields. Aug2022, Vol. 183 Issue 3/4, p1285-1327. 43p.
Autor:
Teyssier, Lucas
We present an improved version of Diaconis' upper bound lemma, which is used to compute the limiting value of the distance to stationarity. We then apply it to random transpositions studied by Diaconis and Shahshahani.; Ni prezentas plibonigon de la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::c5634d582d4371bfd3522cd3aa930770
https://hal.archives-ouvertes.fr/hal-02133811
https://hal.archives-ouvertes.fr/hal-02133811