Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Tewary, Vivek"'
Autor:
Prasad, Harsh, Tewary, Vivek
We prove existence, uniqueness and initial time regularity for variational solutions to nonlocal total variation flows associated with image denoising and deblurring. In particular, we prove existence of parabolic minimisers $u$, that is, $$\int_0^T\
Externí odkaz:
http://arxiv.org/abs/2410.17649
In this paper, we prove local H\"older continuity for the spatial gradient of weak solutions to $$u_t - \text{div} (|\nabla u|^{p-2}\nabla u) + \text{P.V.} \int_{\mathbb{R}^n} \frac{|u(x,t) - u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{n+ps}} \ dy = 0.$$ It
Externí odkaz:
http://arxiv.org/abs/2307.02363
In this paper, we obtain $C^{1,\alpha}$ estimates for weak solutions of certain quasilinear parabolic equations satisfying nonstandard growth conditions, the prototype examples being $$u_t - \text{div} (|\nabla u|^{p-2} \nabla u + a(t)|\nabla u|^{q-2
Externí odkaz:
http://arxiv.org/abs/2208.12322
Autor:
Ghosh, Abhishek, Tewary, Vivek
In this article, we obtain hessian estimates for Kolmogorov-Fokker-Planck operators in non-divergence form in several Banach function spaces. Our approach relies on a representation formula and newly developed sparse domination techniques in Harmonic
Externí odkaz:
http://arxiv.org/abs/2205.15069
We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for $p\in (1,\infty)$ and $s
Externí odkaz:
http://arxiv.org/abs/2205.09695
We give an alternative proof for H\"older regularity for weak solutions of nonlocal elliptic quasilinear equations modelled on the fractional p-Laplacian where we replace the discrete De Giorgi iteration on a sequence of concentric balls by a continu
Externí odkaz:
http://arxiv.org/abs/2203.13082
Autor:
Adimurthi, Karthik, Tewary, Vivek
We prove local Lipschitz regularity for bounded minimizers of functionals with nonstandard $p,q$-growth with the source term in the Lorentz space $L(N,1)$ under the restriction $q
Externí odkaz:
http://arxiv.org/abs/2203.03482
We prove existence of variational solutions for a class of doubly nonlinear nonlocal evolution equations whose prototype is the double phase equation \begin{align*} \partial_t u^m &+ \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u
Externí odkaz:
http://arxiv.org/abs/2201.00634
Autor:
Prasad, Harsh, Tewary, Vivek
We prove local boundedness of variational solutions to the double phase equation \begin{align*} \partial_t u +& P.V.\int_{\mathbb{R}^N}\frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}}\\ &+a(x,y)\frac{|u(x,t)-u(y,t)|^{q-2}(u(x,t)-u(y,t))}{|x-
Externí odkaz:
http://arxiv.org/abs/2112.02345
Autor:
Prasad, Harsh, Tewary, Vivek
We prove existence of variational solutions for a class of nonlocal evolution equations whose prototype is the double phase equation \begin{align*} \partial_t u &+ \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps
Externí odkaz:
http://arxiv.org/abs/2112.00402