Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Tetrahedron maps"'
Autor:
Kassotakis, Pavlos
We present three non-equivalent procedures to obtain entwining (non-constant) tetrahedron maps. Given a tetrahedron map, the first procedure incorporates its underlying symmetry group. With the second procedure we obtain several classes of entwining
Externí odkaz:
http://arxiv.org/abs/2410.06888
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pavlos Kassotakis
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 12, Iss , Pp 100949- (2024)
We present three non-equivalent procedures to obtain entwining (non-constant) tetrahedron maps. Given a tetrahedron map, the first procedure incorporates its underlying symmetry group. With the second procedure we obtain several classes of entwining
Externí odkaz:
https://doaj.org/article/bd997eacf5aa4f1d95989c51aa1ec5c5
Publikováno v:
J. Phys. A: Math. Theor. 54 (2021), 505203
We study tetrahedron maps, which are set-theoretical solutions to the Zamolodchikov tetrahedron equation, and Yang-Baxter maps, which are set-theoretical solutions to the quantum Yang-Baxter equation. In particular, we clarify the structure of the no
Externí odkaz:
http://arxiv.org/abs/2106.09130
Autor:
Konstantinou-Rizos, Sotiris
This paper is concerned with the construction of new solutions in terms of birational maps to the functional tetrahedron equation and parametric tetrahedron equation. We present a method for constructing solutions to the parametric tetrahedron equati
Externí odkaz:
http://arxiv.org/abs/2005.13574
Autor:
Yoneyama, Akihito
We established a method for obtaining set-theoretical solutions to the 3D reflection equation by using known ones to the Zamolodchikov tetrahedron equation, where the former equation was proposed by Isaev and Kulish as a boundary analog of the latter
Externí odkaz:
http://arxiv.org/abs/2103.01105
Autor:
Konstantinou-Rizos, S.
Publikováno v:
In Nuclear Physics, Section B November 2020 960
A relationship between the tetrahedron equation for maps and the consistency property of integrable discrete equations on $\mathbb{Z}^3$ is investigated. Our approach is a generalization of a method developed in the context of Yang-Baxter maps, based
Externí odkaz:
http://arxiv.org/abs/1908.03019
Autor:
S. Konstantinou-Rizos
Publikováno v:
Nuclear Physics B, Vol 960, Iss , Pp 115207- (2020)
This paper is concerned with the construction of new solutions in terms of birational maps to the functional tetrahedron equation and parametric tetrahedron equation. We present a method for constructing solutions to the parametric tetrahedron equati
Externí odkaz:
https://doaj.org/article/8dd004cfff0e4f78810524c367c6aa28
Autor:
Chirkov, M.
Publikováno v:
In Partial Differential Equations in Applied Mathematics December 2024 12