Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Terzic, Svjetlana"'
We relate the theory of moduli spaces $\overline{\mathcal{M}}_{0,\mathcal{A}}$ of stable weighted curves of genus $0$ to the equivariant topology of complex Grassmann manifolds $G_{n,2}$, with the canonical action of the compact torus $T^n$. We prove
Externí odkaz:
http://arxiv.org/abs/2410.01059
Autor:
Ivanović, Vladimir, Terzić, Svjetlana
We study the $\mathbb{Z}_2$-homology groups of the orbit space $X_n = G_{n,2}/T^n$ for the canonical action of the compact torus $T^n$ on a complex Grassmann manifold $G_{n,2}$. Our starting point is the model $(U_n, p_n)$ for $X_n$ constructed by Bu
Externí odkaz:
http://arxiv.org/abs/2406.11625
The focus of our paper is on the complex Grassmann manifolds $G_{n,2}$ which appear as one of the fundamental objects in developing the interaction between algebraic geometry and algebraic topology. In his well-known paper Kapranov has proved that th
Externí odkaz:
http://arxiv.org/abs/2104.08858
The problem of the description of the orbit space $X_{n} = G_{n,2}/T^n$ for the standard action of the torus $T^n$ on a complex Grassmann manifold $G_{n,2}$ is widely known and it appears in diversity of mathematical questions. A point $x\in X_{n}$ i
Externí odkaz:
http://arxiv.org/abs/2009.01580
Publikováno v:
Mat.Sbornik, Vol. 210, no.4, (2019), 41-86, (in Russian)
In the focus of our paper is a system of axioms that serves as a basis for introducing structural data for $(2n,k)$-manifolds $M^{2n}$, where $M^{2n}$ is a smooth, compact $2n$-dimensional manifold with a smooth effective action of the $k$-dimensiona
Externí odkaz:
http://arxiv.org/abs/1803.05766
The family of the complex Grassmann manifolds $G_{n,k}$ with a canonical action of the torus $T^n=\mathbb{T}^{n}$ and the analogue of the moment map $\mu : G_{n,k}\to \Delta _{n,k}$ for the hypersimplex $\Delta _{n,k}$, is well known. In this paper w
Externí odkaz:
http://arxiv.org/abs/1802.06449
Autor:
Terzic, Svjetlana
We discuss the question of geometric formality for rationally elliptic manifolds of dimension $6$ and $7$. We prove that a geometrically formal six-dimensional biquotient with $b_{2}=3$ has the real cohomology of a symmetric space. We also show that
Externí odkaz:
http://arxiv.org/abs/1701.04479
Autor:
Andrišić, Miroslav *, Žarković, Irena, Šandor, Ksenija, Vujnović, Anja, Perak Junaković, Eleonora, Bendelja, Krešo, Savić Mlakar, Ana, Oršolić, Nada, Šver, Lidija, Benić, Miroslav, Terzić, Svjetlana
Publikováno v:
In Veterinary Immunology and Immunopathology January 2022 243
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Terzic, Svjetlana
We provide the rational-homotopic proof that the ranks of the homotopy groups of a simply connected four-manifold depend only on its second Betti number. We also consider the based loop spaces of the gauge groups and the spaces of connections of a si
Externí odkaz:
http://arxiv.org/abs/1603.08100