Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Teruel, Milagro"'
Autor:
Mohanty, Shrestha, Arabzadeh, Negar, Kiseleva, Julia, Zholus, Artem, Teruel, Milagro, Awadallah, Ahmed, Sun, Yuxuan, Srinet, Kavya, Szlam, Arthur
Human intelligence's adaptability is remarkable, allowing us to adjust to new tasks and multi-modal environments swiftly. This skill is evident from a young age as we acquire new abilities and solve problems by imitating others or following natural l
Externí odkaz:
http://arxiv.org/abs/2305.10783
Autor:
Mehta, Nikhil, Teruel, Milagro, Sanz, Patricio Figueroa, Deng, Xin, Awadallah, Ahmed Hassan, Kiseleva, Julia
Many approaches to Natural Language Processing (NLP) tasks often treat them as single-step problems, where an agent receives an instruction, executes it, and is evaluated based on the final outcome. However, human language is inherently interactive,
Externí odkaz:
http://arxiv.org/abs/2304.10750
Autor:
Liu, Yixin, Deb, Budhaditya, Teruel, Milagro, Halfaker, Aaron, Radev, Dragomir, Awadallah, Ahmed H.
Despite the recent progress in language generation models, their outputs may not always meet user expectations. In this work, we study whether informational feedback in natural language can be leveraged to improve generation quality and user preferen
Externí odkaz:
http://arxiv.org/abs/2212.09968
Autor:
Mohanty, Shrestha, Arabzadeh, Negar, Teruel, Milagro, Sun, Yuxuan, Zholus, Artem, Skrynnik, Alexey, Burtsev, Mikhail, Srinet, Kavya, Panov, Aleksandr, Szlam, Arthur, Côté, Marc-Alexandre, Kiseleva, Julia
Publikováno v:
Interactive Learning for Natural Language Processing NeurIPS 2022 Workshop
Human intelligence can remarkably adapt quickly to new tasks and environments. Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural lang
Externí odkaz:
http://arxiv.org/abs/2211.06552
Autor:
Skrynnik, Alexey, Volovikova, Zoya, Côté, Marc-Alexandre, Voronov, Anton, Zholus, Artem, Arabzadeh, Negar, Mohanty, Shrestha, Teruel, Milagro, Awadallah, Ahmed, Panov, Aleksandr, Burtsev, Mikhail, Kiseleva, Julia
The adoption of pre-trained language models to generate action plans for embodied agents is a promising research strategy. However, execution of instructions in real or simulated environments requires verification of the feasibility of actions as wel
Externí odkaz:
http://arxiv.org/abs/2211.00688
Autor:
Kiseleva, Julia, Skrynnik, Alexey, Zholus, Artem, Mohanty, Shrestha, Arabzadeh, Negar, Côté, Marc-Alexandre, Aliannejadi, Mohammad, Teruel, Milagro, Li, Ziming, Burtsev, Mikhail, ter Hoeve, Maartje, Volovikova, Zoya, Panov, Aleksandr, Sun, Yuxuan, Srinet, Kavya, Szlam, Arthur, Awadallah, Ahmed
Human intelligence has the remarkable ability to adapt to new tasks and environments quickly. Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provid
Externí odkaz:
http://arxiv.org/abs/2205.13771
Autor:
Teruel, Milagro
Publikováno v:
Repositorio Digital Universitario (UNC)
Universidad Nacional de Córdoba
instacron:UNC
Universidad Nacional de Córdoba
instacron:UNC
Tesis (Doctora en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2019. Este trabajo es un estudio sobre la generación automática de representaciones basadas en métodos
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::bd55cba3c746442bc0ce56b75770fc29
Publikováno v:
FLAIRS 2019-32th International Florida Artificial Intelligence Research Society Conference
FLAIRS 2019-32th International Florida Artificial Intelligence Research Society Conference, May 2019, Sarasota, United States
FLAIRS 2019-32th International Florida Artificial Intelligence Research Society Conference, May 2019, Sarasota, United States
International audience; Argument mining is a rising area of Natural Language Processing (NLP) concerned with the automatic recognition and interpretation of argument components and their relations. Neural models are by now mature technologies to be e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::07f64eea0769e51f452504f3e18d46cf
https://hal.science/hal-02381078/file/18298-78917-1-PB.pdf
https://hal.science/hal-02381078/file/18298-78917-1-PB.pdf
Autor:
Cardellino, Cristian, Alonso Alemany, Laura, Teruel, Milagro, Villata, Serena, Marro, Santiago
Publikováno v:
FLAIRS 2019-32th International Florida Artificial Intelligence Research Society Conference
FLAIRS 2019-32th International Florida Artificial Intelligence Research Society Conference, May 2019, Sarasota, United States
FLAIRS 2019-32th International Florida Artificial Intelligence Research Society Conference, May 2019, Sarasota, United States
International audience; In this paper we adapt the semi-supervised deep learning architecture known as "Convolutional Ladder Networks", from the domain of computer vision, and explore how well it works for a semi-supervised Named Entity Recognition a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ac06faddb08f0ae2630fe2c74e5887bf
https://hal.archives-ouvertes.fr/hal-02381093/file/18295-78914-1-PB.pdf
https://hal.archives-ouvertes.fr/hal-02381093/file/18295-78914-1-PB.pdf
Autor:
Teruel, Milagro, Cardellino, Cristian, Cardellino, Fernando, Alonso Alemany, Laura, Villata, Serena
Publikováno v:
Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018
LREC 2018-11th International Conference on Language Resources and Evaluation
LREC 2018-11th International Conference on Language Resources and Evaluation, May 2018, Miyazaki, Japan. pp.1-4
LREC 2018-11th International Conference on Language Resources and Evaluation
LREC 2018-11th International Conference on Language Resources and Evaluation, May 2018, Miyazaki, Japan. pp.1-4
International audience; In this abstract we present a methodology to improve Argument annotation guidelines by exploiting inter-annotator agreement measures.After a first stage of the annotation effort, we have detected problematic issues via an anal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::98fca41b3910303edde5434b9409490f
https://hal.science/hal-01876506
https://hal.science/hal-01876506