Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Tertikas, Achilles"'
There are two Rellich inequalities for the bilaplacian, that is for $\int (\Delta u)^2dx$, the one involving $|\nabla u|$ and the other involving $|u|$ at the RHS. In this article we consider these inequalities with sharp constants and obtain sharp S
Externí odkaz:
http://arxiv.org/abs/2312.00433
Let $\Omega$ be a bounded domain in $\mathbb{R}^N$ with $C^2$ boundary and let $K\subset\partial\Omega$ be either a $C^2$ submanifold of the boundary of codimension $k
Externí odkaz:
http://arxiv.org/abs/2207.04667
Publikováno v:
Bulletin of the Hellenic Mathematical Society, Volume 63 (2019), pp 64-96
In this article we compute the best Sobolev constants for various Hardy-Sobolev inequalities with sharp Hardy term. This is carried out in three different environments: interior point singularity in Euclidean space, interior point singularity in hype
Externí odkaz:
http://arxiv.org/abs/1909.10212
We study the Hardy inequality when the singularity is placed on the boundary of a bounded domain in $\mathbb{R}^n$ that satisfies both an interior and exterior ball condition at the singularity. We obtain the sharp Hardy constant $n^2/4$ in case the
Externí odkaz:
http://arxiv.org/abs/1701.06336
In this work we establish trace Hardy-Sobolev-Maz'ya inequalities with best Hardy constants, for weakly mean convex domains. We accomplish this by obtaining a new weighted Hardy type estimate which is of independent inerest. We then produce Hardy-Sob
Externí odkaz:
http://arxiv.org/abs/1409.4519
The Hardy constant of a simply connected domain $\Omega\subset\mathbf{R}^2$ is the best constant for the inequality \[ \int_{\Omega}|\nabla u|^2dx \geq c\int_{\Omega} \frac{u^2}{{\rm dist}(x,\partial\Omega)^2}\, dx \; , \;\;\quad u\in C^{\infty}_c(\O
Externí odkaz:
http://arxiv.org/abs/1409.3677
The Hardy constant of a simply connected domain $\Omega\subset\R^2$ is the best constant for the inequality \[ \int_{\Omega}|\nabla u|^2dx \geq c\int_{\Omega} \frac{u^2}{{\rm dist}(x,\partial\Omega)^2}\, dx \;, u\in C^{\infty}_c(\Omega). \] After the
Externí odkaz:
http://arxiv.org/abs/1309.0264
In this work we establish trace Hardy and trace Hardy-Sobolev-Maz'ya inequalities with best Hardy constants, for domains satisfying suitable geometric assumptions such as mean convexity or convexity. We then use them to produce fractional Hardy-Sobol
Externí odkaz:
http://arxiv.org/abs/1110.3604
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We obtain the sharp constant for the Hardy-Sobolev inequality involving the distance to the origin. This inequality is equivalent to a limiting Caffarelli-Kohn-Nirenberg inequality. In three dimensions, in certain cases the sharp constant coincides w
Externí odkaz:
http://arxiv.org/abs/0911.0948