Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Terry R. McConnell"'
Publikováno v:
Northern Journal of Applied Forestry. 28:27-35
The amount of growing space occupied by trees of given sizes and species is traditionally assessed on a plot basis, using observations from groups of trees growing within an area of fixed size. Our study combines individual-tree with plot-based obser
Autor:
Terry R. McConnell
Publikováno v:
Transactions of the American Mathematical Society. 326:669-699
We prove existence and uniqueness of solutions to a problem which generalizes the two-sided Stefan problem. The initial temperature distribution and variable latent heat may be given by positive measures rather than point functions, and the free boun
Autor:
Terry R. McConnell
Publikováno v:
Transactions of the American Mathematical Society. 318:721-733
We prove the inequality h ( x ) − 1 G ( x , y ) h ( y ) ⩽ c G ( x , y ) + c h{(x)^{ - 1}}G(x,y)h(y) \leqslant cG(x,y) + c , where G G is the Green function of a plane domain D , h D,\;h is positive and harmonic on D D , and c c is a constant whos
Autor:
Terry R. McConnell, Philip S. Griffin
Publikováno v:
Ann. Probab. 23, no. 4 (1995), 2022-2056
Let $T_r$ be the first time a sum $S_n$ of nondegenerate i.i.d. random variables leaves a ball of radius $r$ in some given norm on $\mathbb{R}^d$. In the case of the Euclidean norm we completely characterize $L^p$-boundedness of the overshoot $\|S_{T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e56e80a3b5d43158cb01ccf6b66027c
http://projecteuclid.org/euclid.aop/1176987814
http://projecteuclid.org/euclid.aop/1176987814
Autor:
Philip S. Griffin, Terry R. McConnell
Publikováno v:
Ann. Probab. 22, no. 3 (1994), 1429-1472
Let $T_r$ be the first time a sum $S_n$ of nondegenerate i.i.d. random vectors in $\mathbb{R}^d$ leaves the sphere of radius $r$ in some given norm. We characterize, in terms of the distribution of the individual summands, the following probabilistic
Autor:
Terry R. McConnell, Philip S. Griffin
Publikováno v:
Ann. Probab. 20, no. 2 (1992), 825-854
Let $T_r$ be the first time a sum $S_n$ of nondegenerate i.i.d. random vectors leaves the sphere of radius $r$. The spheres are determined by some given norm on $\mathbb{R}^d$ which need not be the Euclidean norm. As a particular case of our results,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce9b897e4e9c8e8c9e72d7dec5ae1ff8
http://projecteuclid.org/euclid.aop/1176989808
http://projecteuclid.org/euclid.aop/1176989808
Autor:
Murad S. Taqqu, Terry R. McConnell
Publikováno v:
Probability Theory and Related Fields. 75:499-507
Let E be a Banach space and Π: E→ℝ+ be symmetric, continuous and convex. Let {Ui} and {ri} be independent sequences of random variables having, respectively, U(0, 1) and symmetric Bernoulli distributions, and let {U i (j) } and {r i (j) } for j=
Autor:
Terry R. McConnell
Publikováno v:
Transactions of the American Mathematical Society. 271:719-731
We study the following problem concerning stopped N N -dimensional Brownian motion: Compute the maximal function of the process, ignoring those times when it is in some fixed region R R . Suppose this modified maximal function belongs to L q {L^q} .
Autor:
Murad S. Taqqu, Terry R. McConnell
Publikováno v:
Stochastic Processes and their Applications. 22:323-331
Recently, Rosinski and Woyczynski have given necessary and sufficient conditions for the existence of the double integral with respect to a symmetric stable process of index α in [1, 2). In their approach the double integral is defined as an iterate
Autor:
Terry R. McConnell
Publikováno v:
Transactions of the American Mathematical Society. 285:739-757
We obtain analogues of the Mihlin multiplier theorem and Littlewood-Paley inequalities for functions with values in a suitable Banach space B B . The requirement on B B is that it have the unconditionality property for martingale difference sequences