Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Terra, Joana"'
Let $\Omega\subset\mathbb{R}^{n}$ be a smooth bounded domain and $m\in C(\overline{\Omega})$ be a sign-changing weight function. For $1
Externí odkaz:
http://arxiv.org/abs/1810.05696
We prove existence, uniqueness, and regularity for a reaction-diffusion system of coupled bulk-surface equations on a moving domain modelling receptor-ligand dynamics in cells. The nonlinear coupling between the three unknowns is through the Robin bo
Externí odkaz:
http://arxiv.org/abs/1612.03007
In this paper we continue our study of the large time behavior of the bounded solution to the nonlocal diffusion equation with absorption \begin{align} \begin{cases} u_t = \mathcal{L} u-u^p\quad& \mbox{in}\quad \mathbb R^N\times(0,\infty),\\ u(x,0) =
Externí odkaz:
http://arxiv.org/abs/1404.3226
Autor:
Terra, Joana
We study existence and regularity properties of stable positive solutions to the nonvariational problem - Delta u - b(x)|nabla u|^2 = lambda g(u) in a bounded smooth domain. In the case where b is constant, by means of a Hopf-Cole transformation, the
Externí odkaz:
http://arxiv.org/abs/1310.1149
Autor:
Terra, Joana, Wolanski, Noemi
We study the large time behavior of nonnegative solutions of the Cauchy problem $u_t=\int J(x-y)(u(y,t)-u(x,t))\,dy-u^p$, $u(x,0)=u_0(x)\in L^\infty$, where $|x|^{\alpha}u_0(x)\to A>0$ as $|x|\to\infty$. One of our main goals is the study of the crit
Externí odkaz:
http://arxiv.org/abs/1004.0717
Autor:
Terra, Joana, Wolanski, Noemi
In this paper we study the asymptotic behavior as time goes to infinity of the solution to a nonlocal diffusion equation with absorption modeled by a powerlike reaction $-u^p$, $p>1$ and set in $\R^N$. We consider a bounded, nonnegative initial datum
Externí odkaz:
http://arxiv.org/abs/0912.3553
Autor:
Cabre, Xavier, Terra, Joana
We consider the elliptic equation $-\Delta u = f(u)$ in the whole $\R^{2m}$, where $f$ is of bistable type. It is known that there exists a saddle-shaped solution in $\R^{2m}$. This is a solution which changes sign in $\R^{2m}$ and vanishes only on t
Externí odkaz:
http://arxiv.org/abs/0907.3008
Autor:
Cabre, Xavier, Terra, Joana
We study the existence and instability properties of saddle-shaped solutions of the semilinear elliptic equation $-\Delta u = f(u)$ in the whole $\R^{2m}$, where $f$ is of bistable type. It is known that in dimension $2m=2$ there exists a saddle-shap
Externí odkaz:
http://arxiv.org/abs/0801.3379
Autor:
TERRA, JOANA, WOLANSKI, NOEMI
Publikováno v:
Proceedings of the American Mathematical Society, 2011 Apr 01. 139(4), 1421-1432.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9939-2010-10612-3
Let Ω ⊂ R n be a smooth bounded domain and m∈ C(Ω ¯) be a sign-changing weight function. For 1 < p< ∞, consider the eigenvalue problem {-Δpu=λm(x)|u|p-2uinΩ,u=0on∂Ω,where Δ p u is the usual p-Laplacian. Our purpose in this article is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3498::0d6b4face0afd6a3c7af436355f843c9
http://link.springer.com/10.1007/s00030-019-0561-y
http://link.springer.com/10.1007/s00030-019-0561-y