Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Teresa Scarinci"'
Autor:
Caroline Geiersbach, Teresa Scarinci
The study of optimal control problems under uncertainty plays an important role in scientific numerical simulations. This class of optimization problems is strongly utilized in engineering, biology and finance. In this paper, a stochastic gradient me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::359889ca016ff230fce95d0fe0681170
http://arxiv.org/abs/2108.11782
http://arxiv.org/abs/2108.11782
Autor:
Caroline Geiersbach, Teresa Scarinci
Publikováno v:
Computational Optimization and Applications
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66b00290ec537e44043dbdf5167c7f8a
http://arxiv.org/abs/2001.01329
http://arxiv.org/abs/2001.01329
In a bounded domain of R n with boundary given by a smooth ( n − 1 ) -dimensional manifold, we consider the homogeneous Dirichlet problem for the eikonal equation associated with a family of smooth vector fields { X 1 , … , X N } subject to Horma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0ad43690e8e215ff4c6268da6e9f4a7
http://hdl.handle.net/11585/645107
http://hdl.handle.net/11585/645107
On a bounded domain Omega in the Euclidean space R-n, we study the homogeneous Dirichlet problem for the eikonal equation associated with a system of smooth vector fields, which satisfies Hormander's bracket generating condition. We prove that the so
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0061c516085f8f04006ebb0f1ead77b4
http://hdl.handle.net/2108/207375
http://hdl.handle.net/2108/207375
Autor:
Teresa Scarinci, Vladimir M. Veliov
Publikováno v:
Computational Optimization and Applications
This paper considers a linear-quadratic optimal control problem where the control function appears linearly and takes values in a hypercube. It is assumed that the optimal controls are of purely bang-bang type and that the switching function, associa
The paper investigates the Lipschitz/Holder stability with respect to perturbations of optimal control problems with linear dynamic and cost functional which is quadratic in the state and linear in the control variable. The optimal control is assumed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::616e24dc278e8182f821d925d31322bd
http://hdl.handle.net/11697/151300
http://hdl.handle.net/11697/151300
Publikováno v:
Large-Scale Scientific Computing ISBN: 9783319734408
LSSC
LSSC
The paper investigates the stability of the solutions of linear-quadratic optimal control problems with bang-bang controls in terms of metric sub-regularity and bi-metric regularity. New sufficient conditions for these properties are obtained, which
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82b6863e74054fde7ead9d3d56d399cc
http://hdl.handle.net/11697/151294
http://hdl.handle.net/11697/151294
This paper presents a discretization scheme for Mayer's type optimal control problems of linear systems. The scheme is based on second order Volterra--Fliess approximations, and on an augmentation of the control variable in a control set of higher di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd88cf697051a0f1df4da756e7e84d4c
https://hal.science/hal-01848630
https://hal.science/hal-01848630
Autor:
Marco Mazzola, Daniela Tonon, Teresa Scarinci, Andrea Boccia, Luong V. Nguyen, Cédric M. Campos, Francisco J. Silva, Maria Soledad Aronna, Michele Palladino
Publikováno v:
Optimal Control: Novel Directions and Applications
Optimal Control: Novel Directions and Applications, 2180, Springer, pp.1-125, 2017, Lectures Notes in Mathematics, ⟨10.1007/978-3-319-60771-9_1⟩
Optimal Control: Novel Directions and Applications ISBN: 9783319607702
Optimal Control: Novel Directions and Applications, 2180, Springer, pp.1-125, 2017, Lectures Notes in Mathematics, ⟨10.1007/978-3-319-60771-9_1⟩
Optimal Control: Novel Directions and Applications ISBN: 9783319607702
This chapter aims at being a friendly presentation of various results related to optimality conditions of Optimal Control problems. Different classes of systems are considered, such as equations with time delays and/or state constraints, dynamics aff
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31ad224a24cf1d497c277460b2d08994
http://hdl.handle.net/11577/3389247
http://hdl.handle.net/11577/3389247
Publikováno v:
SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (6), pp 3642/3672
SIAM Journal on Control and Optimization, 2015, 53 (6), pp 3642/3672
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (6), pp 3642/3672
SIAM Journal on Control and Optimization, 2015, 53 (6), pp 3642/3672
29 pages; International audience; This paper investigates the value function, $V$, of a Mayer optimal control problem with the state equation given by a differential inclusion. First, we obtain an invariance property for the proximal and Fréchet sub
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b11c11645ece129bc93a1c3e93c4e3a3
https://hal.sorbonne-universite.fr/hal-01057579v2
https://hal.sorbonne-universite.fr/hal-01057579v2