Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Tenenbaum, Lior"'
We study periodic approximations of aperiodic Schr\"odinger operators on lattices in Lie groups with dilation structure. The potentials arise through symbolic substitution systems that have been recently introduced in this setting. We characterize co
Externí odkaz:
http://arxiv.org/abs/2408.09282
Autor:
Tenenbaum, Lior
Periodic approximations of quasicrystals are a powerful tool in analyzing spectra of Schr\"odinger operators arising from quasicrystals, given the known theory for periodic crystals. Namely, we seek periodic operators whose spectra approximate the sp
Externí odkaz:
http://arxiv.org/abs/2402.19151
Autor:
Rosenthal, Ron, Tenenbaum, Lior
A spanning tree $T$ in a graph $G$ is a sub-graph of $G$ with the same vertex set as $G$ which is a tree. In 1981, McKay proved an asymptotic result regarding the number of spanning trees in random $k$-regular graphs. In this paper we prove a high-di
Externí odkaz:
http://arxiv.org/abs/2008.06955
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.