Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Tejas Parekh"'
Autor:
Robert J. H. Miller, Ananya Singh, Yuka Otaki, Balaji K. Tamarappoo, Paul Kavanagh, Tejas Parekh, Lien-Hsin Hu, Heidi Gransar, Tali Sharir, Andrew J. Einstein, Mathews B. Fish, Terrence D. Ruddy, Philipp A. Kaufmann, Albert J. Sinusas, Edward J. Miller, Timothy M. Bateman, Sharmila Dorbala, Marcelo F. Di Carli, Joanna X. Liang, Damini Dey, Daniel S. Berman, Piotr J. Slomka
Publikováno v:
Eur J Nucl Med Mol Imaging
PURPOSE: Artificial intelligence (AI) has high diagnostic accuracy for coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, when trained using high-risk populations (such as patients with correlating invasive testing), the
Autor:
Yuka Otaki, Serge D. Van Kriekinge, Chih-Chun Wei, Paul Kavanagh, Ananya Singh, Tejas Parekh, Marcelo Di Carli, Jamshid Maddahi, Arkadiusz Sitek, Christopher Buckley, Daniel S. Berman, Piotr J. Slomka
Publikováno v:
European Journal of Nuclear Medicine and Molecular Imaging. 49:1881-1893
Autor:
Ananya Singh, Jacek Kwiecinski, Robert J.H. Miller, Yuka Otaki, Paul B. Kavanagh, Serge D. Van Kriekinge, Tejas Parekh, Heidi Gransar, Konrad Pieszko, Aditya Killekar, Ramyashree Tummala, Joanna X. Liang, Marcelo F. Di Carli, Daniel S. Berman, Damini Dey, Piotr J. Slomka
Publikováno v:
Circulation: Cardiovascular Imaging. 15
Background: We aim to develop an explainable deep learning (DL) network for the prediction of all-cause mortality directly from positron emission tomography myocardial perfusion imaging flow and perfusion polar map data and evaluate it using prospect
Autor:
Terrence D. Ruddy, Marcio A. Diniz, Edward J. Miller, Robert J.H. Miller, Marcelo F. Di Carli, Damini Dey, Philipp A. Kaufmann, Paul B. Kavanagh, Mathews B. Fish, Tejas Parekh, Ananya Singh, Tali Sharir, Serge D. Van Kriekinge, Sharmila Dorbala, Joanna X Liang, Daniel S. Berman, Albert J. Sinusas, Richard Rios, Lien-Hsin Hu, Timothy M. Bateman, Andrew J. Einstein, Piotr J. Slomka, Yuka Otaki
Publikováno v:
Cardiovascular Research. 118:2152-2164
AIMS Optimal risk stratification with machine learning (ML) from myocardial perfusion imaging (MPI) includes both clinical and imaging data. While most imaging variables can be derived automatically, clinical variables require manual collection, whic
Publikováno v:
Surface and Coatings Technology. 447:128839
Publikováno v:
2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC).
Diabetic Retinopathy (DR) is one among the most dangerous complications of polygenic disease, and if it is untreated, it can result in permanent disability. Early detection is critical for clinical progress and it is one of the most difficult challen
Autor:
Tejas Parekh, Keiichiro Kuronuma, Terrence D. Ruddy, Yuka Otaki, Edward J. Miller, Daniel S. Berman, Serge D. Van Kriekinge, Timothy M. Bateman, Sharmila Dorbala, Joanna X Liang, Mathews B. Fish, Tali Sharir, Lien-Hsin Hu, Heidi Gransar, Robert J.H. Miller, Marcelo F. Di Carli, Balaji Tamarappoo, Albert J. Sinusas, Philipp A. Kaufmann, Damini Dey, Marcio A. Diniz, Paul B. Kavanagh, Andrew J. Einstein, Piotr J. Slomka
Publikováno v:
Circ Cardiovasc Imaging
Background: Phase analysis of single-photon emission computed tomography myocardial perfusion imaging provides dyssynchrony information which correlates well with assessments by echocardiography, but the independent prognostic significance is not wel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56b3d058bcba8183dfb11443ef7c096e
https://doi.org/10.5167/uzh-208812
https://doi.org/10.5167/uzh-208812
Autor:
Richard Rios, Robert J.H. Miller, Nipun Manral, Tali Sharir, Andrew J. Einstein, Mathews B. Fish, Terrence D. Ruddy, Philipp A. Kaufmann, Albert J. Sinusas, Edward J. Miller, Timothy M. Bateman, Sharmila Dorbala, Marcelo Di Carli, Serge D. Van Kriekinge, Paul B. Kavanagh, Tejas Parekh, Joanna X. Liang, Damini Dey, Daniel S. Berman, Piotr J. Slomka
Publikováno v:
Comput Biol Med
BackgroundMachine learning (ML) models can improve prediction of major adverse cardiovascular events (MACE), but in clinical practice some values may be missing. We evaluated the influence of missing values in ML models for patient-specific predictio
Publikováno v:
Challenges and Solutions for Sustainable Smart City Development ISBN: 9783030701826
Mobility is undergoing a notable change that will transform cities, businesses, and society. To plan a smart city which provides an efficient and impartial solution on civic mobility is a critical problem all over the world. Increasingly consumers ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fa67e20fdbe46450cf3afbc53807645b
https://doi.org/10.1007/978-3-030-70183-3_2
https://doi.org/10.1007/978-3-030-70183-3_2