Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Teerapat Srichan"'
Autor:
Teerapat Srichan
Publikováno v:
Discrete Mathematics Letters, Vol 10, Pp 107-111 (2022)
Externí odkaz:
https://doaj.org/article/844f757cc3be426084ea3276c8899f0b
Autor:
Teerapat Srichan
Publikováno v:
Mathematics, Vol 11, Iss 11, p 2507 (2023)
Using the exponent pair method, a bound is derived for the sum ∑manb≤xχ1a(m)χ2b(n), where a,b are fixed positive integers, χ1,χ2 are primitive Dirichlet characters modulo q1 and q2, respectively, and χ1a,χ2b are not principal characters. As
Externí odkaz:
https://doaj.org/article/1fa7b41b35964949b55980c94ca29db2
Publikováno v:
Bulletin of the Australian Mathematical Society. :1-7
For a positive integer$r\geq 2$, a natural numbernisr-free if there is no primepsuch that$p^r\mid n$. Asymptotic formulae for the distribution ofr-free integers in the floor function set$S(x):=\{\lfloor x/ n \rfloor :1\leq n\leq x\}$are derived. The
Publikováno v:
Czechoslovak Mathematical Journal. 73:197-212
Autor:
Teerapat Srichan
Publikováno v:
Mathematica Slovaca. 72:1145-1150
Let f k ( n ) := ∑ d k ∣ n Φ ( d ) , $$ f_k(n):=\sum\limits_{d^k \mid n} \Phi(d), $$ where Φ(d) is a multiplicative function, Φ(d) = O(dε ). We study asymptotic behaviour of the sum T f k c ( N ) := ∑ n ≤ N f k n c , 1 < c < 2 , $$ T_{f_k
Publikováno v:
The Journal of Analysis. 31:733-745
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 29
Publikováno v:
Czechoslovak Mathematical Journal. 72:149-163
Let a and $$b \in \mathbb{N}$$ . Denote by Ra,b the set of all integers n > 1 whose canonical prime representation $$n = p_1^{{\alpha _1}}p_2^{{\alpha _2}} \ldots p_r^{{\alpha _r}}$$ has all exponents αi (1 ⩽ i ⩽ r) being a multiple of a or belo
Publikováno v:
Bulletin of the Australian Mathematical Society. 105:217-222
Using a method due to Rieger [‘Remark on a paper of Stux concerning squarefree numbers in non-linear sequences’, Pacific J. Math.78(1) (1978), 241–242], we prove that the Piatetski-Shapiro sequence defined by $\{\lfloor n^c \rfloor : n\in \math
Publikováno v:
Proceedings - Mathematical Sciences. 132