Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Teare, Philip"'
Autor:
Gema, Aryo Pradipta, Jin, Chen, Abdulaal, Ahmed, Diethe, Tom, Teare, Philip, Alex, Beatrice, Minervini, Pasquale, Saseendran, Amrutha
Large Language Models (LLMs) often hallucinate, producing unfaithful or factually incorrect outputs by misrepresenting the provided context or incorrectly recalling internal knowledge. Recent studies have identified specific attention heads within th
Externí odkaz:
http://arxiv.org/abs/2410.18860
Autor:
Kim, Seunghoi, Jin, Chen, Diethe, Tom, Figini, Matteo, Tregidgo, Henry F. J., Mullokandov, Asher, Teare, Philip, Alexander, Daniel C.
Recent developments in diffusion models have advanced conditioned image generation, yet they struggle with reconstructing out-of-distribution (OOD) images, such as unseen tumors in medical images, causing "image hallucination" and risking misdiagnosi
Externí odkaz:
http://arxiv.org/abs/2404.05980
Textural Inversion, a prompt learning method, learns a singular text embedding for a new "word" to represent image style and appearance, allowing it to be integrated into natural language sentences to generate novel synthesised images. However, ident
Externí odkaz:
http://arxiv.org/abs/2310.12274
Supervised training of deep learning models for medical imaging applications requires a significant amount of labeled data. This is posing a challenge as the images are required to be annotated by medical professionals. To address this limitation, we
Externí odkaz:
http://arxiv.org/abs/2309.11899
Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canon
Externí odkaz:
http://arxiv.org/abs/2303.17893
Autor:
Shadbahr, Tolou, Roberts, Michael, Stanczuk, Jan, Gilbey, Julian, Teare, Philip, Dittmer, Sören, Thorpe, Matthew, Torne, Ramon Vinas, Sala, Evis, Lio, Pietro, Patel, Mishal, Collaboration, AIX-COVNET, Rudd, James H. F., Mirtti, Tuomas, Rannikko, Antti, Aston, John A. D., Tang, Jing, Schönlieb, Carola-Bibiane
Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using established methods, followed by
Externí odkaz:
http://arxiv.org/abs/2206.08478
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dittmer, Sören, Roberts, Michael, Gilbey, Julian, Biguri, Ander, Selby, Ian, Breger, Anna, Thorpe, Matthew, Weir-McCall, Jonathan R., Gkrania-Klotsas, Effrossyni, Korhonen, Anna, Jefferson, Emily, Langs, Georg, Yang, Guang, Prosch, Helmut, Stanczuk, Jan, Tang, Jing, Babar, Judith, Escudero Sánchez, Lorena, Teare, Philip, Patel, Mishal
Publikováno v:
Nature Machine Intelligence; Jul2023, Vol. 5 Issue 7, p681-686, 6p
Autor:
Roberts, Michael, Driggs, Derek, Thorpe, Matthew, Gilbey, Julian, Yeung, Michael, Ursprung, Stephan, Aviles-Rivero, Angelica I., Etmann, Christian, McCague, Cathal, Beer, Lucian, Weir-McCall, Jonathan R., Teng, Zhongzhao, Gkrania-Klotsas, Effrossyni, Ruggiero, Alessandro, Korhonen, Anna, Jefferson, Emily, Ako, Emmanuel, Langs, Georg, Gozaliasl, Ghassem, Yang, Guang, Prosch, Helmut, Preller, Jacobus, Stanczuk, Jan, Tang, Jing, Hofmanninger, Johannes, Babar, Judith, Sánchez, Lorena Escudero, Thillai, Muhunthan, Gonzalez, Paula Martin, Teare, Philip, Zhu, Xiao Xiang, Patel, Mishal, Cafolla, Conor, Azadbakht, Hojjat, Jacob, Joseph, Lowe, Josh, Zhang, Kang, Bradley, Kyle, Wassin, Marcel, Holzer, Markus, Ji, Kangyu, Ortet, Maria Delgado, Ai, Tao, Walton, Nicholas, Lio, Pietro, Stranks, Samuel, Shadbahr, Tolou, Lin, Weizhe, Zha, Yunfei, Niu, Zhangming, Rudd, James H. F., Sala, Evis, Schönlieb, Carola-Bibiane
Publikováno v:
Roberts, M, Driggs, D, Thorpe, M, Gilbey, J, Yeung, M, Ursprung, S, Aviles-Rivero, A, Etmann, C, McCague, C, Beer, L, Weir-McCall, J, Teng, Z, Gkrania-Klotsas, E, AIX-COVNET, Rudd, J, Sala, E & Schoenlieb, C-B 2021, ' Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans ', Nature Machine Intelligence, vol. 3, pp. 199-217 . https://doi.org/10.1038/s42256-021-00307-0
Machine learning methods offer great promise for fast and accurate detection and prognostication of COVID-19 from standard-of-care chest radiographs (CXR) and computed tomography (CT) images. Many articles have been published in 2020 describing new m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6203f7e866d10f75cc7e536c8041e1e0
http://hdl.handle.net/10138/329624
http://hdl.handle.net/10138/329624
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.