Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Tchagang, Alain B."'
Autor:
Valdés, Julio J., Tchagang, Alain B.
This paper explores the internal structure of two quantum mechanics datasets (QM7b, QM9), composed of several thousands of organic molecules and described in terms of electronic properties. Understanding the structure and characteristics of this kind
Externí odkaz:
http://arxiv.org/abs/2309.15130
Accumulation of molecular data obtained from quantum mechanics (QM) theories such as density functional theory (DFTQM) make it possible for machine learning (ML) to accelerate the discovery of new molecules, drugs, and materials. Models that combine
Externí odkaz:
http://arxiv.org/abs/2004.10091
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Valdés, Julio J., Tchagang, Alain B.
Publikováno v:
Journal of Computational Chemistry; 6/5/2024, Vol. 45 Issue 15, p1193-1214, 22p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Valdes, Julio J., Tchagang, Alain B.
Publikováno v:
2020 IEEE Symposium Series on Computational Intelligence (SSCI).
The approximation and emulation of first principles based deterministic models are important problems in many disciplines, like physical and natural sciences, as well as in engineering (industrial design, creation of digital twins and other tasks). T
Autor:
Tchagang, Alain B.1 alain.tchagang@nrc-cnrc.gc.ca, Fauteux, François1, Tulpan, Dan2, Pan, Youlian1
Publikováno v:
BMC Bioinformatics. 3/16/2017, Vol. 18, p1-16. 16p. 4 Diagrams, 2 Charts, 2 Graphs.
Autor:
Tchagang Alain B, Phan Sieu, Famili Fazel, Shearer Heather, Fobert Pierre, Huang Yi, Zou Jitao, Huang Daiqing, Cutler Adrian, Liu Ziying, Pan Youlian
Publikováno v:
BMC Bioinformatics, Vol 13, Iss 1, p 54 (2012)
Abstract Background Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray g
Externí odkaz:
https://doaj.org/article/cbe42a3e17e540df90d88a27a5f92511
Publikováno v:
BMC Bioinformatics, Vol 11, Iss 1, p 229 (2010)
Abstract Background Modern high throughput experimental techniques such as DNA microarrays often result in large lists of genes. Computational biology tools such as clustering are then used to group together genes based on their similarity in express
Externí odkaz:
https://doaj.org/article/34fbdc4e420d4913b796702fa1b301a0
Publikováno v:
BMC Bioinformatics, Vol 10, Iss 1, p 255 (2009)
Abstract Background Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard cluste
Externí odkaz:
https://doaj.org/article/1007a55a115d423bbd0338e9d08844f0