Zobrazeno 1 - 10
of 115
pro vyhledávání: '"Tavakoli, Mostafa"'
The mixed metric dimension ${\rm mdim}(G)$ of a graph $G$ is the cardinality of a smallest set of vertices that (metrically) resolves each pair of elements from $V(G)\cup E(G)$. We say that $G$ is a max-mdim graph if ${\rm mdim}(G) = n(G)$. It is pro
Externí odkaz:
http://arxiv.org/abs/2305.19620
Let $G$ be a graph and let $S(G)$, $M(G)$, and $T(G)$ be the subdivision, the middle, and the total graph of $G$, respectively. Let ${\rm dim}(G)$, ${\rm edim}(G)$, and ${\rm mdim}(G)$ be the metric dimension, the edge metric dimension, and the mixed
Externí odkaz:
http://arxiv.org/abs/2206.04983
Autor:
Tavakoli, Mostafa1, Jalilvand, Hamid1 hamidjalilvand@sbmu.ac.ir, Mahdavi, Mohammad Ebrahim1, Baghban, Alireza Akbarzadeh2,3
Publikováno v:
Auditory & Vestibular Research (2423-480X). 2024, Vol. 33 Issue 3, p243-251. 9p.
A global forcing set for maximal matchings of a graph $G=(V(G), E(G))$ is a set $S \subseteq E(G)$ such that $M_1\cap S \neq M_2 \cap S$ for each pair of maximal matchings $M_1$ and $M_2$ of $G$. The smallest such set is called a minimum global forci
Externí odkaz:
http://arxiv.org/abs/2107.13786
Let $G$ be a connected graph. For an ordered set $S=\{v_1,\ldots, v_\ell\}\subseteq V(G)$, the vector $r_G(v|S) = (d_G(v_1,v), \ldots, d_G(v_\ell,v))$ is called the metric $S$-representation of $v$. If for any pair of different vertices $u,v\in V(G)$
Externí odkaz:
http://arxiv.org/abs/2101.10012
Autor:
Klavžar, Sandi, Tavakoli, Mostafa
If $S=\{v_1,\ldots, v_k\}$ is an ordered subset of vertices of a connected graph $G$ and $e$ is an edge of $G$, then the vector $r_G(e|S) = (d_G(v_1,e), \ldots, d_G(v_k,e))$ is the edge metric $S$-representation of $e$. If the vertices of $G$ have pa
Externí odkaz:
http://arxiv.org/abs/2003.04045
Autor:
Klavžar, Sandi, Tavakoli, Mostafa
Dominator coloring of a graph is a proper (vertex) coloring with the property that every vertex is either alone in its color class or adjacent to all vertices of at least one color class. A dominated coloring of a graph is a proper coloring such that
Externí odkaz:
http://arxiv.org/abs/2002.07451
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Klavžar, Sandi, Tavakoli, Mostafa
Let $G$ be a graph and $S\subseteq V(G)$. If every two adjacent vertices of $G$ have different metric $S$-representations, then $S$ is a local metric generator for $G$. A local metric generator of smallest order is a local metric basis for $G$, its o
Externí odkaz:
http://arxiv.org/abs/1902.09116
Autor:
Ghalavand, Ali, Klavžar, Sandi, Tavakoli, Mostafa, Hakimi-Nezhaad, Mardjan, Rahbarnia, Freydoon
Publikováno v:
In Applied Mathematics and Computation 1 January 2023 436