Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Tavakol, Maryam"'
Deep neural networks are in the limelight of machine learning with their excellent performance in many data-driven applications. However, they can lead to inaccurate predictions when queried in out-of-distribution data points, which can have detrimen
Externí odkaz:
http://arxiv.org/abs/2302.14552
Fairness-aware learning aims at satisfying various fairness constraints in addition to the usual performance criteria via data-driven machine learning techniques. Most of the research in fairness-aware learning employs the setting of fair-supervised
Externí odkaz:
http://arxiv.org/abs/2205.10032
Autor:
Tavakol, Maryam
Recommender systems aim to capture the interests of users in order to provide them with tailored recommendations for items or services they might like. User interests are often unique and depend on many unobservable factors including internal moods o
The emergence of structured databases for Question Answering (QA) systems has led to developing methods, in which the problem of learning the correct answer efficiently is based on a linking task between the constituents of the question and the corre
Externí odkaz:
http://arxiv.org/abs/1909.12566
Publikováno v:
Proceedings of the Northern Lights Deep Learning Workshop; Vol. 4 (2023): Proceedings of the Northern Lights Deep Learning Workshop 2023
Recent advances in machine learning have proved effective in the application of drug discovery by predicting the drugs that are likely to interact with a protein target of a certain disease, leading to prioritizing drug development and re-purposing e
Publikováno v:
Molecular Diversity; Jun2023, Vol. 27 Issue 3, p1333-1343, 11p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Tavakol, M, Mair, S & Morik, K 2020, HyperUCB : Hyperparameter optimization using contextual bandits . in P Cellier & K Driessens (eds), Machine Learning and Knowledge Discovery in Databases : International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part I . vol. 1, Communications in Computer and Information Science, vol. 1167, Springer Nature AG, Cham, pp. 44-50, 19th Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases-2019, Wurzburg, Germany, 16.09.19 . https://doi.org/10.1007/978-3-030-43823-4_4
Setting the optimal hyperparameters of a learning algorithm is a crucial task. Common approaches such as a grid search over the hyperparameter space or randomly sampling hyperparameters require many configurations to be evaluated in order to perform
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3697::48027048cfbc202f4137cf2a4f8137f6
http://www.scopus.com/inward/record.url?scp=85083719265&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85083719265&partnerID=8YFLogxK
Publikováno v:
Tavakol, M, Joppen, T, Brefeld, U & Fürnkranz, J 2019, Personalized Transaction Kernels for Recommendation Using MCTS . in C Benzmüller & H Stuckenschmidt (eds), KI 2019 : Advances in Artificial Intelligence-42nd German Conference on AI, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11793 LNAI, Springer, Wiesbaden, pp. 338-352, German Conference on Artificial Intelligence, KI 2019, Kassel, Germany, 23.09.19 . https://doi.org/10.1007/978-3-030-30179-8_31
Tavakol, M, Joppen, T, Brefeld, U & Fürnkranz, J 2019, Personalized Transaction Kernels for Recommendation Using MCTS . in C Benzmüller & H Stuckenschmidt (eds), KI 2019 : Advances in Artificial Intelligence-42nd German Conference on AI, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11793 LNAI, Springer Verlag, Wiesbaden, pp. 338-352, 42nd German Conference on Artificial Intelligence, KI 2019, Kassel, Germany, 23.09.19 . DOI: 10.1007/978-3-030-30179-8_31
Tavakol, M, Joppen, T, Brefeld, U & Fürnkranz, J 2019, Personalized Transaction Kernels for Recommendation Using MCTS . in C Benzmüller & H Stuckenschmidt (eds), KI 2019 : Advances in Artificial Intelligence-42nd German Conference on AI, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11793 LNAI, Springer Verlag, Wiesbaden, pp. 338-352, 42nd German Conference on Artificial Intelligence, KI 2019, Kassel, Germany, 23.09.19 . DOI: 10.1007/978-3-030-30179-8_31
We study pairwise preference data to model the behavior of users in online recommendation problems. We first propose a tensor kernel to model contextual transactions of a user in a joint feature space. The representation is extended to all users via
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::36024d36cd5762508d2a96c86e1a4848
http://www.scopus.com/inward/record.url?scp=85072855644&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85072855644&partnerID=8YFLogxK
Publikováno v:
Gaonkar, R, Tavakol, M & Brefeld, U 2018, MDP-based itinerary recommendation using geo-tagged social media . in W Duivesteijn, A Siebes & A Ukkonen (eds), Advances in Intelligent Data Analysis XVII-17th International Symposium, IDA 2018, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), no. 11191, Springer Nature, Basel, pp. 111-123, 17th International Symposium on Intelligent Data Analysis-IDA 2018, ‘s-Hertogenbosch, Netherlands, 24.10.18 . DOI: 10.1007/978-3-030-01768-2_10
Gaonkar, R, Tavakol, M & Brefeld, U 2018, MDP-based itinerary recommendation using geo-tagged social media . in W Duivesteijn, A Siebes & A Ukkonen (eds), Advances in Intelligent Data Analysis XVII-17th International Symposium, IDA 2018, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), no. 11191, Springer Nature AG, Basel, pp. 111-123, 17th International Symposium on Intelligent Data Analysis-IDA 2018, ‘s-Hertogenbosch, Netherlands, 24.10.18 . https://doi.org/10.1007/978-3-030-01768-2_10
Gaonkar, R, Tavakol, M & Brefeld, U 2018, MDP-based itinerary recommendation using geo-tagged social media . in W Duivesteijn, A Siebes & A Ukkonen (eds), Advances in Intelligent Data Analysis XVII-17th International Symposium, IDA 2018, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), no. 11191, Springer Nature AG, Basel, pp. 111-123, 17th International Symposium on Intelligent Data Analysis-IDA 2018, ‘s-Hertogenbosch, Netherlands, 24.10.18 . https://doi.org/10.1007/978-3-030-01768-2_10
Planning vacations is a complex decision problem. Many variables like the place(s) to visit, how many days to stay, the duration at each location, and the overall travel budget need to be controlled and arranged by the user. Automatically recommendin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::11f42ef60dfa01e5d4fe57a97aa09971
http://www.scopus.com/inward/record.url?scp=85055718851&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85055718851&partnerID=8YFLogxK