Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Tauber, Clément"'
Autor:
Gontier, David, Tauber, Clément
We study and classify the emergence of protected edge modes at the junction of one-dimensional materials. Using symmetries of Lagrangian planes in boundary symplectic spaces, we present a novel proof of the periodic table of topological insulators in
Externí odkaz:
http://arxiv.org/abs/2412.15887
Autor:
Jud, Hansueli, Tauber, Clément
We study the Dirac Hamiltonian in dimension two with a mass term and a large momentum regularization, and show that bulk-edge correspondence fails. Despite a well defined bulk topological index --the Chern number--, the number of edge modes depends o
Externí odkaz:
http://arxiv.org/abs/2403.04465
Publikováno v:
Ann. Henri Poincar\'e 25 (2024), 751-771
We study the slowly varying, non-autonomous quantum dynamics of a translation invariant spin or fermion system on the lattice $\mathbb Z^d$. This system is assumed to be initially in thermal equilibrium, and we consider realizations of quasi-static p
Externí odkaz:
http://arxiv.org/abs/2204.02177
Publikováno v:
Ann. Henri Poincar \'e 25 (2024), 715-749
We formulate the problem of approach to equilibrium in algebraic quantum statistical mechanics and study some of its structural aspects, focusing on the relation between the zeroth law of thermodynamics (approach to equilibrium) and the second law (i
Externí odkaz:
http://arxiv.org/abs/2204.00440
Publikováno v:
J. Math. Phys. 63, 121901 (2022)
We develop a formalism to extend, simultaneously, the usual definition of bulk and edge indices from topological insulators to the case of a finite sample with open boundary conditions, and provide a physical interpretation of these quantities. We th
Externí odkaz:
http://arxiv.org/abs/2203.17099
Autor:
Tauber, Clément, Thiang, Guo Chuan
Publikováno v:
Ann. Henri Poincar\'e 24:107-132 (2023)
In the context of topological insulators, the shallow-water model was recently shown to exhibit an anomalous bulk-edge correspondence. For the model with a boundary, the parameter space involves both longitudinal momentum and boundary conditions, and
Externí odkaz:
http://arxiv.org/abs/2110.04097
Autor:
Lapierre, Bastien, Choo, Kenny, Tiwari, Apoorv, Tauber, Clément, Neupert, Titus, Chitra, Ramasubramanian
Publikováno v:
Phys. Rev. Research 2, 033461 (2020)
We study the heating dynamics of a generic one dimensional critical system when driven quasiperiodically. Specifically, we consider a Fibonacci drive sequence comprising the Hamiltonian of uniform conformal field theory (CFT) describing such critical
Externí odkaz:
http://arxiv.org/abs/2006.10054
Publikováno v:
Communications in Mathematical Physics 383, 731-761 (2021)
We study the two-dimensional rotating shallow-water model describing Earth's oceanic layers. It is formally analogue to a Schr\"odinger equation where the tools from topological insulators are relevant. Once regularized at small scale by an odd-visco
Externí odkaz:
http://arxiv.org/abs/2001.00439
Autor:
Lapierre, Bastien, Choo, Kenny, Tauber, Clément, Tiwari, Apoorv, Neupert, Titus, Chitra, Ramasubramanian
Publikováno v:
Phys. Rev. Research 2, 023085 (2020)
While driven interacting quantum matter is generically subject to heating and scrambling, certain classes of systems evade this paradigm. We study such an exceptional class in periodically driven critical (1 + 1)-dimensional systems with a spatially
Externí odkaz:
http://arxiv.org/abs/1909.08618
Autor:
Gomi, Kiyonori, Tauber, Clément
The topology of electrons on a lattice subject to a periodic driving is captured by the three-dimensional winding number of the propagator that describes time-evolution within a cycle. This index captures the homotopy class of such a unitary map. In
Externí odkaz:
http://arxiv.org/abs/1906.10358