Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Tatiana Tatarenko"'
Autor:
Tatiana Tatarenko, Jan Zimmermann
This work provides methodological approaches to solve convex optimization problems arising in multi-agent systems which can be reformulated in terms of a so called N-cluster game. We consider different settings of information available to each agent
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::524347b3fc278f913d5e560210cb1687
http://tuprints.ulb.tu-darmstadt.de/23282/
http://tuprints.ulb.tu-darmstadt.de/23282/
Zusammenfassung In diesem Beitrag wird die Anwendung von Gradient-Tracking-Verfahren in Multi-Cluster-Spielen untersucht. Neben einer Aufarbeitung relevanter Literatur umfasst die Arbeit einen theoretischen und simulativen Vergleich zwischen zwei bes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::93b068feb4f91243f8b2626c1c32cf7c
http://tuprints.ulb.tu-darmstadt.de/23283/
http://tuprints.ulb.tu-darmstadt.de/23283/
Publikováno v:
European Journal of Control. 62:14-21
We are concerned with finding Nash Equilibria in agent-based multi-cluster games, where agents are separated into distinct clusters. While the agents inside each cluster collaborate to achieve a common goal, the clusters themselves are considered to
Publikováno v:
IEEE Transactions on Automatic Control. 66:5342-5353
We study distributed algorithms for seeking a Nash equilibrium in a class of convex networked Nash games with strongly monotone mappings. Each player has access to her own smooth local cost function and can communicate to her neighbors in some undire
Autor:
Tatiana Tatarenko
Publikováno v:
at - Automatisierungstechnik. 68:166-175
Zusammenfassung Diese Arbeit bietet einen Überblick über Methoden, die verteilte und spieltheoretische Optimierungsprobleme in Multi-Agenten-Systemen lösen. Alle betrachteten Methoden basieren auf der Annahme, dass die kritischen Informationen im
Autor:
Tatiana Tatarenko, Angelia Nedic
Publikováno v:
IFAC-PapersOnLine. 53:3367-3372
We provide a distributed algorithm to learn a Nash equilibrium in a class of non-cooperative games with strongly monotone mappings and unconstrained action sets. Each player has access to her own smooth local cost function and can communicate to her
Publikováno v:
at - Automatisierungstechnik. 67:922-935
Zusammenfassung Dieser Beitrag beschäftigt sich mit verteilten, beschränkten Gradientenverfahren zur Optimierung eines Energie-Management-Problems. Zwei verschiedene Lösungsstrategien werden betrachtet. Zum einen wird ein Entkopplungsansatz analys
Autor:
Tatiana Tatarenko
Publikováno v:
Automatica. 99:1-12
Game theory serves as a powerful tool for distributed optimization in multi-agent systems in different applications. In this paper we consider multi-agent systems that can be modeled by means of potential games whose potential function coincides with
Publikováno v:
CDC
We propose a novel algorithm for solving convex, constrained and distributed optimization problems defined on multi-agent-networks, where each agent has exclusive access to a part of the global objective function. The agents are able to exchange info
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4eabaa11a1a2c32a396ca7120124ab24
http://tuprints.ulb.tu-darmstadt.de/17573/
http://tuprints.ulb.tu-darmstadt.de/17573/
We study a distributed approach for seeking a Nash equilibrium in $n$-cluster games with strictly monotone mappings. Each player within each cluster has access to the current value of her own smooth local cost function estimated by a zero-order oracl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4cf9165e209c0eaf8d170dd8f61e7f6