Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Tatiana Berzina"'
Publikováno v:
AIP Advances, Vol 6, Iss 11, Pp 111302-111302-8 (2016)
A new architecture of organic memristive device is proposed with a double-layered polyelectrolyte, one of which is a biological system that alone drives the memristive behavior. In the device the Physarum polycephalum was used as living organism, the
Externí odkaz:
https://doaj.org/article/2a320818720642b3847af5417ae39eec
Publikováno v:
Soft matter
2 (2006): 870–874. doi:10.1039/b606893f
info:cnr-pdr/source/autori:Erokhin V. ab; Berzina T. b; Camorani P. b; Fontana M.P. b/titolo:Conducting polymer-solid electrolyte fibrillar composite material for adaptive networks/doi:10.1039%2Fb606893f/rivista:Soft matter (Print)/anno:2006/pagina_da:870/pagina_a:874/intervallo_pagine:870–874/volume:2
2 (2006): 870–874. doi:10.1039/b606893f
info:cnr-pdr/source/autori:Erokhin V. ab; Berzina T. b; Camorani P. b; Fontana M.P. b/titolo:Conducting polymer-solid electrolyte fibrillar composite material for adaptive networks/doi:10.1039%2Fb606893f/rivista:Soft matter (Print)/anno:2006/pagina_da:870/pagina_a:874/intervallo_pagine:870–874/volume:2
The non-linear electrical characteristics of a polymeric electrochemically controlled junction based on a conducting polymer (polyaniline) and a solid electrolyte (Li+ doped polyethylene oxide) are considered as basic features for the realization of
Publikováno v:
Microelectronic engineering 193 (2018): 65–70. doi:10.1016/j.mee.2018.02.024
info:cnr-pdr/source/autori:Cifarelli A.; Parisini A.; Berzina T.; Iannotta S./titolo:Organic memristive element with Chitosan as solid polyelectrolyte/doi:10.1016%2Fj.mee.2018.02.024/rivista:Microelectronic engineering/anno:2018/pagina_da:65/pagina_a:70/intervallo_pagine:65–70/volume:193
info:cnr-pdr/source/autori:Cifarelli A.; Parisini A.; Berzina T.; Iannotta S./titolo:Organic memristive element with Chitosan as solid polyelectrolyte/doi:10.1016%2Fj.mee.2018.02.024/rivista:Microelectronic engineering/anno:2018/pagina_da:65/pagina_a:70/intervallo_pagine:65–70/volume:193
The biomimetic devices such as the artificial synapses are of great significance because they can emulate the functions of biological systems. The development of memristive devices represents one of the most promising pathways towards adaptive and ne
Publikováno v:
Microelectronic Engineering. :111527
In the present research the kinetic behaviour of an electrochemical two-terminal organic memristive device (OMD) based on polyaniline/solid polyelectrolyte heterojunction is investigated as a function of the doping level of a solid polyelectrolyte, u
Publikováno v:
Organic Electronics. 83:105757
We investigated in details the redox mechanism of an electrochemical two-terminal solid-state device with memory, otherwise named organic memristive device (OMD), by varying the composition of solid polyelectrolytes, the doping agents of the conducti
Publikováno v:
Microelectronic engineering 185-186 (2018): 55–60. doi:10.1016/j.mee.2017.11.001
info:cnr-pdr/source/autori:Cifarelli A.; Parisini A.; Iannotta S.; Berzina T./titolo:Organic memristive devices based on pectin as a solid polyelectrolyte/doi:10.1016%2Fj.mee.2017.11.001/rivista:Microelectronic engineering/anno:2018/pagina_da:55/pagina_a:60/intervallo_pagine:55–60/volume:185-186
info:cnr-pdr/source/autori:Cifarelli A.; Parisini A.; Iannotta S.; Berzina T./titolo:Organic memristive devices based on pectin as a solid polyelectrolyte/doi:10.1016%2Fj.mee.2017.11.001/rivista:Microelectronic engineering/anno:2018/pagina_da:55/pagina_a:60/intervallo_pagine:55–60/volume:185-186
Novel architectures of organic memristive device with pectin as a solid polyelectrolyte have been developed and studied. The assembled devices exhibit memristive properties (hysteresis and rectification) emulating the signal process and memory functi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23ddac0ccb2a6ed0a357834fadd05bb9
Publikováno v:
Applied surface science 435 (2018): 1344–1350. doi:10.1016/j.apsusc.2017.11.162
info:cnr-pdr/source/autori:Berzina T.; Dimonte A.; Adamatzky A.; Erokhin V.; Iannotta S./titolo:Biolithography: Slime mould patterning of polyaniline/doi:10.1016%2Fj.apsusc.2017.11.162/rivista:Applied surface science/anno:2018/pagina_da:1344/pagina_a:1350/intervallo_pagine:1344–1350/volume:435
info:cnr-pdr/source/autori:Berzina T.; Dimonte A.; Adamatzky A.; Erokhin V.; Iannotta S./titolo:Biolithography: Slime mould patterning of polyaniline/doi:10.1016%2Fj.apsusc.2017.11.162/rivista:Applied surface science/anno:2018/pagina_da:1344/pagina_a:1350/intervallo_pagine:1344–1350/volume:435
Slime mould Physarum polycephalum develops intricate patterns of protoplasmic networks when foraging on a non-nutrient substrates. The networks are optimised for spanning larger spaces with minimum body mass and for quick transfer of nutrients and me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f9cf4849ad66de1703b776276c04357
Autor:
Azat Nasretdinov, Elvira Juzekaeva, Silvia Battistoni, Victor Erokhin, Marat Mukhtarov, Salvatore Iannotta, Tatiana Berzina, Rustem Khazipov
Publikováno v:
Advanced Materials Technologies
Advanced Materials Technologies, Wiley, 2018, pp.1800350. ⟨10.1002/admt.201800350⟩
Advanced materials (Weinh., Print) 4 (2019): 1800350-1–1800350-6. doi:10.1002/admt.201800350
info:cnr-pdr/source/autori:Juzekaeva E.; Nasretdinov A.; Battistoni S.; Berzina T.; Iannotta S.; Khazipov R.; Erokhin V.; Mukhtarov M./titolo:Coupling Cortical Neurons through Electronic Memristive Synapse/doi:10.1002%2Fadmt.201800350/rivista:Advanced materials (Weinh., Print)/anno:2019/pagina_da:1800350-1/pagina_a:1800350-6/intervallo_pagine:1800350-1–1800350-6/volume:4
Advanced Materials Technologies, 2018, pp.1800350. ⟨10.1002/admt.201800350⟩
Advanced Materials Technologies, Wiley, 2018, pp.1800350. ⟨10.1002/admt.201800350⟩
Advanced materials (Weinh., Print) 4 (2019): 1800350-1–1800350-6. doi:10.1002/admt.201800350
info:cnr-pdr/source/autori:Juzekaeva E.; Nasretdinov A.; Battistoni S.; Berzina T.; Iannotta S.; Khazipov R.; Erokhin V.; Mukhtarov M./titolo:Coupling Cortical Neurons through Electronic Memristive Synapse/doi:10.1002%2Fadmt.201800350/rivista:Advanced materials (Weinh., Print)/anno:2019/pagina_da:1800350-1/pagina_a:1800350-6/intervallo_pagine:1800350-1–1800350-6/volume:4
Advanced Materials Technologies, 2018, pp.1800350. ⟨10.1002/admt.201800350⟩
International audience; of electrophysiological spike-sorting [4] and optogenetic [5] approaches enables an efficient readout and control over activity of single or groups of neurons leading to a development of prosthetic devices. For example, fMRI-g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::538ca7020ee1b25b06c7529aaa06a152
https://hal-amu.archives-ouvertes.fr/hal-01963794
https://hal-amu.archives-ouvertes.fr/hal-01963794
Autor:
Tullo Besagni, Tatiana Berzina, Patrizia Ferro, Franca Albertini, Alice Dimonte, Angelica Cifarelli, Victor Erokhin, Andrew Adamatzky, V. Chiesi
Publikováno v:
Interdisciplinary Sciences: Computational Life Sciences 7 (2015): 373–381. doi:10.1007/s12539-015-0021-2
info:cnr-pdr/source/autori:Dimonte, Alice; Cifarelli, Angelica; Berzina, Tatiana; Chiesi, Valentina; Ferro, Patrizia; Besagni, Tullo; Albertini, Franca; Adamatzky, Andrew; Erokhin, Victor/titolo:Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution/doi:10.1007%2Fs12539-015-0021-2/rivista:Interdisciplinary Sciences: Computational Life Sciences/anno:2015/pagina_da:373/pagina_a:381/intervallo_pagine:373–381/volume:7
info:cnr-pdr/source/autori:Dimonte, Alice; Cifarelli, Angelica; Berzina, Tatiana; Chiesi, Valentina; Ferro, Patrizia; Besagni, Tullo; Albertini, Franca; Adamatzky, Andrew; Erokhin, Victor/titolo:Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution/doi:10.1007%2Fs12539-015-0021-2/rivista:Interdisciplinary Sciences: Computational Life Sciences/anno:2015/pagina_da:373/pagina_a:381/intervallo_pagine:373–381/volume:7
Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrie
Publikováno v:
Physica status solidi. C, Current topics in solid state physics
12 (2015): 218–221. doi:10.1002/pssc.201400191
info:cnr-pdr/source/autori:Cifarelli, Angelica; Berzina, Tatiana S.; Erokhin, Victor V./titolo:Bio-organic memristive device: Polyaniline-Physarum polycephalum interface/doi:10.1002%2Fpssc.201400191/rivista:Physica status solidi. C, Current topics in solid state physics (Print)/anno:2015/pagina_da:218/pagina_a:221/intervallo_pagine:218–221/volume:12
12 (2015): 218–221. doi:10.1002/pssc.201400191
info:cnr-pdr/source/autori:Cifarelli, Angelica; Berzina, Tatiana S.; Erokhin, Victor V./titolo:Bio-organic memristive device: Polyaniline-Physarum polycephalum interface/doi:10.1002%2Fpssc.201400191/rivista:Physica status solidi. C, Current topics in solid state physics (Print)/anno:2015/pagina_da:218/pagina_a:221/intervallo_pagine:218–221/volume:12
Organic memristive device is an electronic system mimicking some properties of biological synapses. Slime mold – Physarum polycephalum – is a single cell living being, widely considered now for the unconventional computing application. This work