Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Tatiana Bandman"'
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 320:27-45
C помощью теории Галуа явно строится (в любой комплексной размерности $g\ge 2$) бесконечное семейство простых $g$-мерных комплексных торов $T$,
Publikováno v:
Uspekhi Matematicheskikh Nauk. 78:3-66
In this survey we discuss holomorphic $\mathbb{P}^1$-bundles $p\colon X \to Y$ over a non-uniruled complex compact Kähler manifold $Y$, paying a special attention to the case when $Y$ is a complex torus. We consider the groups $\operatorname{Aut}(X
Autor:
Tatiana Bandman, Yuri G. Zarhin
Publikováno v:
European Journal of Mathematics. 7:641-670
We call a group G very Jordan if it contains a normal abelian subgroup $$G_0$$ such that the orders of finite subgroups of the quotient $$G/G_0$$ are bounded by a constant depending on G only. Let Y be a complex torus of algebraic dimension 0. We pro
Autor:
Yuri G. Zarhin, Tatiana Bandman
Publikováno v:
Transformation Groups
Let $W$ be a quasiprojective variety over an algebraically closed field of characteristic zero. Assume that $W$ is birational to a product of a smooth projective variety $A$ and the projective line. We prove that if $A$ contains no rational curves th
Autor:
Yuri G. Zarhin, Tatiana Bandman
Publikováno v:
European Journal of Mathematics. 2:614-643
Let $$n \geqslant 2$$ be an integer and $$F_n$$ the free group on n generators, its first and second derived subgroups. Let K be an algebraically closed field of characteristic zero. We show that if , then the corresponding word map is surjective. We
Autor:
Boris Kunyavskiĭ, Tatiana Bandman
Publikováno v:
Journal of Algebra
We study equidistribution of solutions of word equations of the form w(x,y)=g in the family of finite groups SL(2,q). We provide criteria for equidistribution in terms of the trace polynomial of w. This allows us to get an explicit description of cer
Publikováno v:
Journal of Algebra
Given an element $P(X_1,...,X_d)$ of the finitely generated free Lie algebra, for any Lie algebra $g$ we can consider the induced polynomial map $P: g^d\to g$. Assuming that $K$ is an arbitrary field of characteristic $\ne 2$, we prove that if $P$ is
Autor:
Yuri G. Zarhin, Tatiana Bandman
Publikováno v:
Algebraic Geometry
A group $G$ is called Jordan if there is a positive integer $J=J_G$ such that every finite subgroup $\mathcal{B}$ of $G$ contains a commutative subgroup $\mathcal{A}\subset \mathcal{B}$ such that $\mathcal{A}$ is normal in $\mathcal{B}$ and the index
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f1d8c2ab67589e377aca41c9385a378
Autor:
Fritz Grunewald, Tatiana Bandman, Gert-Martin Greuel, Boris Kunyavskii, Gerhard Pfister, Eugene Plotkin
Publikováno v:
Compositio Mathematica. 142:734-764
We characterise the class of finite solvable groups by two-variable identities in a way similar to the characterisation of finite nilpotent groups by Engel identities. Let u1 = x −2 y −1 x, and un+1 =[ xunx −1 ,y uny −1 ]. The main result sta
Autor:
Gert-Martin Greuel, Fritz Grunewald, Tatiana Bandman, Gerhard Pfister, Eugene Plotkin, Boris Kunyavskii
Publikováno v:
Comptes Rendus Mathematique. 337:581-586
We characterise the solvable groups in the class of finite groups by an inductively defined sequence of two-variable identities. Our main theorem is the analogue of a classical theorem of Zorn which gives a characterisation of the nilpotent groups in