Zobrazeno 1 - 10
of 15 301
pro vyhledávání: '"Tate P"'
Autor:
Xinchang Zhang, Michael D. McMurtrey, Ryann E. Bass, Tate Patterson, Ninad Mohale, Thomas M. Lillo, Jorgen F. Rufner
Publikováno v:
Journal of Materials Research and Technology, Vol 26, Iss , Pp 7033-7051 (2023)
The development of compact heat exchangers (CHXs) has gained increasing interest in many industries owing to their high thermal efficiency and reduced size. Diffusion bonding (DB) is an advantageous technique for fabricating CHXs. Alloy 617 is a cand
Externí odkaz:
https://doaj.org/article/ddc51fc5862141f6bd31650eda45da5e
Autor:
M. C. Flux, Thomas H. Fine, Tate Poplin, Obada Al Zoubi, William A. Schoenhals, Jesse Schettler, Hazem H. Refai, Jessyca Naegele, Colleen Wohlrab, Hung-Wen Yeh, Christopher A. Lowry, Jason C. Levine, Ryan Smith, Sahib S. Khalsa, Justin S. Feinstein
Publikováno v:
Frontiers in Neuroscience, Vol 16 (2022)
The central nervous system (CNS) exerts a strong regulatory influence over the cardiovascular system in response to environmental demands. Floatation-REST (Reduced Environmental Stimulation Therapy) is an intervention that minimizes stimulation from
Externí odkaz:
https://doaj.org/article/7d7ac9cb3f5a4cb19d65a4450b97797e
Autor:
Ghosh, Ritam, Khan, Nibraas, Migovich, Miroslava, Tate, Judith A., Maxwell, Cathy, Latshaw, Emily, Newhouse, Paul, Scharre, Douglas W., Tan, Alai, Colopietro, Kelley, Mion, Lorraine C., Sarkar, Nilanjan
Apathy impairs the quality of life for older adults and their care providers. While few pharmacological remedies exist, current non-pharmacologic approaches are resource intensive. To address these concerns, this study utilizes a user-centered design
Externí odkaz:
http://arxiv.org/abs/2410.21197
Maximin fairness is the ideal that the worst-off group (or individual) should be treated as well as possible. Literature on maximin fairness in various decision-making settings has grown in recent years, but theoretical results are sparse. In this pa
Externí odkaz:
http://arxiv.org/abs/2410.02589
Autor:
Tate, Reuben, Eidenbenz, Stephan
In order to boost the performance of the Quantum Approximate Optimization Algorithm (QAOA) to solve problems in combinatorial optimization, researchers have leveraged the solutions returned from classical algorithms in order to create a warm-started
Externí odkaz:
http://arxiv.org/abs/2410.00027
This paper presents a numerical simulation investigation of the Warm-Start Quantum Approximate Optimization Algorithm (QAOA) as proposed by Tate et al. [1], focusing on its application to 3-regular Max-Cut problems. Our study demonstrates that Warm-S
Externí odkaz:
http://arxiv.org/abs/2409.09012
Autor:
Louie H. Yang, Karen Swan, Eric Bastin, Jessica Aguilar, Meredith Cenzer, Andrew Codd, Natalie Gonzalez, Tracie Hayes, August Higgins, Xang Lor, Chido Macharaga, Marshall McMunn, Kenya Oto, Nicholas Winarto, Darren Wong, Tabatha Yang, Numan Afridi, Sarah Aguilar, Amelia Allison, Arden Ambrose‐Winters, Edwin Amescua, Mattias Apse, Nancy Avoce, Kirstin Bastin, Emily Bolander, Jessica Burroughs, Cristian Cabrera, Madeline Candy, Ariana Cavett, Melina Cavett, Lemuel Chang, Miles Claret, Delaney Coleman, Jacob Concha, Paxson Danzer, Joe DaRosa, Audrey Dufresne, Claire Duisenberg, Allyson Earl, Emily Eckey, Maddie English, Alexander Espejo, Erika Faith, Amy Fang, Alejandro Gamez, Jackelin Garcini, Julie Garcini, Giancarlo Gilbert‐Igelsrud, Kelly Goedde‐Matthews, Sarah Grahn, Paloma Guerra, Vanessa Guerra, Madison Hagedorn, Katie Hall, Griffin Hall, Jake Hammond, Cody Hargadon, Victoria Henley, Sarah Hinesley, Celeste Jacobs, Camille Johnson, Tattiana Johnson, Zachary Johnson, Emma Juchau, Celeste Kaplan, Andrew Katznelson, Ronja Keeley, Tatum Kubik, Theodore Lam, Chalinee Lansing, Andrea Lara, Vivian Le, Breana Lee, Kyra Lee, Maddy Lemmo, Scott Lucio, Angela Luo, Salman Malakzay, Luke Mangney, Joseph Martin, Wade Matern, Byron McConnell, Maya McHale, Giulia McIsaac, Carolanne McLennan, Stephanie Milbrodt, Mohammed Mohammed, Morgan Mooney‐McCarthy, Laura Morgan, Clare Mullin, Sarah Needles, Kayla Nunes, Fiona O'Keeffe, Olivia O'Keeffe, Geoffrey Osgood, Jessica Padilla, Sabina Padilla, Isabella Palacio, Verio Panelli, Kendal Paulson, Jace Pearson, Tate Perez, Brenda Phrakonekham, Iason Pitsillides, Alex Preisler, Nicholas Preisler, Hailey Ramirez, Sylvan Ransom, Camille Renaud, Tracy Rocha, Haley Saris, Ryan Schemrich, Lyla Schoenig, Sophia Sears, Anand Sharma, Jessica Siu, Maddie Spangler, Shaili Standefer, Kelly Strickland, Makaila Stritzel, Emily Talbert, Sage Taylor, Emma Thomsen, Katrina Toups, Kyle Tran, Hong Tran, Maraia Tuqiri, Sara Valdes, George VanVorhis, Sandy Vue, Shauna Wallace, Johnna Whipple, Paja Yang, Meg Ye, David Yo, Yichao Zeng
Publikováno v:
Ecology and Evolution, Vol 12, Iss 7, Pp n/a-n/a (2022)
Abstract Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain
Externí odkaz:
https://doaj.org/article/30b41b9052524e5dae7747450b6d01d2
Autor:
Jacobson, Tate
Partial penalized tests provide flexible approaches to testing linear hypotheses in high dimensional generalized linear models. However, because the estimators used in these tests are local minimizers of potentially non-convex folded-concave penalize
Externí odkaz:
http://arxiv.org/abs/2408.00270
Autor:
Abdel-Rehim, Abbi, Zenil, Hector, Orhobor, Oghenejokpeme, Fisher, Marie, Collins, Ross J., Bourne, Elizabeth, Fearnley, Gareth W., Tate, Emma, Smith, Holly X., Soldatova, Larisa N., King, Ross D.
Large language models (LLMs) have transformed AI and achieved breakthrough performance on a wide range of tasks that require human intelligence. In science, perhaps the most interesting application of LLMs is for hypothesis formation. A feature of LL
Externí odkaz:
http://arxiv.org/abs/2405.12258
Autor:
Smith, Shannon, Tate, Melissa, Freeman, Keri, Walsh, Anne, Ballsun-Stanton, Brian, Hooper, Mark, Lane, Murray
Generative Artificial Intelligence (generative AI) poses both opportunities and risks for the integrity of research. Universities must guide researchers in using generative AI responsibly, and in navigating a complex regulatory landscape subject to r
Externí odkaz:
http://arxiv.org/abs/2404.19244